(本小題滿分12分)
已知是定義在上的奇函數(shù),當(dāng)時,

(1)求的值;
(2)求的解析式并畫出簡圖;
(3)寫出的單調(diào)區(qū)間(不用證明)。

(1)m=0, f(-2) =4;(2);(3)的增區(qū)間為,減區(qū)間為。

解析試題分析:(1) 由f(0)=0得m=0;     f(-2)=-f(2)=4………………4分
(2)         ……8分

……10分
(只寫出x<0時的解析式扣2分)
(3)由的圖象可知:的增區(qū)間為,減區(qū)間為   …12分
考點:分段函數(shù);函數(shù)的奇偶性;函數(shù)的單調(diào)性;函數(shù)的圖像;函數(shù)解析式的求法。
點評:本題求的解析式是關(guān)鍵。利用函數(shù)的奇偶性求函數(shù)的解析式,一般情況下,求誰設(shè)誰,然后再根據(jù)的關(guān)系進行轉(zhuǎn)換。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分16分)
已知函數(shù),
(1)若上的最大值為,求實數(shù)的值;
(2)若對任意,都有恒成立,求實數(shù)的取值范圍;
(3)在(1)的條件下,設(shè),對任意給定的正實數(shù),曲線 上是否存在兩點,使得是以為坐標原點)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(11分) 已知函數(shù)在定義域上為增函數(shù),且滿足
(1)求的值           (2)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
二次函數(shù).
(1)若對任意恒成立,求實數(shù)的取值范圍;
(2)討論函數(shù)在區(qū)間上的單調(diào)性;
(3)若對任意的,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分).某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計要求容器的體積為立方米,且.假設(shè)該容器的建造費用僅與其表面積有關(guān).已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為千元,設(shè)該容器的建造費用為千元.

(Ⅰ)寫出關(guān)于的函數(shù)表達式,并求該函數(shù)的定義域;
(Ⅱ)求該容器的建造費用最小時的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為定義在上的奇函數(shù),當(dāng)時, 
(1)證明函數(shù)是增函數(shù)(2)求在(-1,1)上的解析式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)計算:
(1)集合
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
(1)化簡:;
(2)已知的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若非零函數(shù)對任意實數(shù)均有,且當(dāng)時, ;
(1)求證:         (2)求證:為減函數(shù)
(3)當(dāng)時,解不等式

查看答案和解析>>

同步練習(xí)冊答案