分析 由已知利用同角三角函數(shù)基本關(guān)系式可求cosα,sin(α+β)的值,由于β=(α+β)-α,利用兩角差的余弦即可求得cosβ.
解答 解:∵α,β都是銳角,$sinα=\frac{4}{5},cos(α+β)=-\frac{8}{17}$,
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{3}{5}$,sin(α+β)=$\sqrt{1-co{s}^{2}(α+β)}$=$\frac{15}{17}$,
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα
=(-$\frac{8}{17}$)×$\frac{3}{5}$+$\frac{15}{17}$×$\frac{4}{5}$=$\frac{36}{85}$.
故答案為:$\frac{36}{85}$.
點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和與差的余弦函數(shù)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,利用β=(α+β)-α是解決問(wèn)題的關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2i | B. | $\frac{i}{2}$ | C. | 0 | D. | 2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
班級(jí) | 1 | 2 | 3 | 4 | 5 | 6 |
頻數(shù) | 6 | 10 | 12 | 12 | 6 | 4 |
達(dá)到 | 3 | 6 | 6 | 6 | 4 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com