18.已知α,β都是銳角,$sinα=\frac{4}{5},cos(α+β)=-\frac{8}{17}$,則cosβ=$\frac{36}{85}$.

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求cosα,sin(α+β)的值,由于β=(α+β)-α,利用兩角差的余弦即可求得cosβ.

解答 解:∵α,β都是銳角,$sinα=\frac{4}{5},cos(α+β)=-\frac{8}{17}$,
∴cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{3}{5}$,sin(α+β)=$\sqrt{1-co{s}^{2}(α+β)}$=$\frac{15}{17}$,
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα
=(-$\frac{8}{17}$)×$\frac{3}{5}$+$\frac{15}{17}$×$\frac{4}{5}$=$\frac{36}{85}$.
故答案為:$\frac{36}{85}$.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和與差的余弦函數(shù)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,利用β=(α+β)-α是解決問(wèn)題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.復(fù)數(shù)i-$\frac{1}{i}$=( 。
A.-2iB.$\frac{i}{2}$C.0D.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.2015年高考結(jié)束,某學(xué)校對(duì)高三畢業(yè)生的高考成績(jī)進(jìn)行調(diào)查,高三年級(jí)共有1到6個(gè)班,從六個(gè)班隨機(jī)抽取50人,對(duì)于高考的考試成績(jī)達(dá)到自己的實(shí)際水平的情況,并將抽查的結(jié)果制成如下的表格,
班級(jí)123456
頻數(shù)610121264
達(dá)到366643
(1)根據(jù)上述的表格,估計(jì)該校高三學(xué)生2015年的高考成績(jī)達(dá)到自己的實(shí)際水平的概率;
(2)若從5班、6班的調(diào)查中各隨機(jī)選取2同學(xué)進(jìn)行調(diào)查,調(diào)查的4人中高考成績(jī)沒(méi)有達(dá)到實(shí)際水平的人數(shù)為ξ,求隨機(jī)ξ的分布列和數(shù)學(xué)的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知△ABC是等腰直角三角形,∠A=90°,且$\overrightarrow{AB}=\overrightarrow a+\overrightarrow b$,$\overrightarrow{AC}=\overrightarrow a-\overrightarrow b$,若$\overrightarrow a=(cosθ,sinθ),θ∈R$,則△ABC的面積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知y=sin3θ+cos3θ,x=sinθ+cosθ,
(Ⅰ)把y表示為x的函數(shù)y=f(x)并寫(xiě)出定義域;
(Ⅱ)求y=f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)向量$\overrightarrow{a}$=(-1,2),向量$\overrightarrow$=(1,λ),若$\overrightarrow{a}$⊥$\overrightarrow$,則實(shí)數(shù)λ的值等于( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)$f(x)=a+\frac{2}{{{2^x}-1}}(a∈R)$.
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)是否存在實(shí)數(shù)a,使函數(shù)f(x)為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)m∈R,復(fù)數(shù)z=(2+i)m 2-3(1+i)m-2(1-i).
(1)若z為實(shí)數(shù),則m=1或2; 
(2)若z為純虛數(shù),則m=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.對(duì)于函數(shù)f(x),若存在實(shí)數(shù)對(duì)(a,b),使得等式f(a+x)•f(a-x)=b對(duì)定義域中的每一個(gè)x都成立,則稱函數(shù)f(x)是“(a,b)型函數(shù)”.
(1)判斷函數(shù)f(x)=4x是否為“(a,b)型函數(shù)”,并說(shuō)明理由;
(2)已知函數(shù)g(x)是“(1,4)型函數(shù)”,且當(dāng)x∈[0,1]時(shí),g(x)=x2-m(x-1)+1(m>0),若當(dāng)x∈[0,2]時(shí),都有1≤g(x)≤3成立,試求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案