【題目】已知一圓經(jīng)過點(diǎn),,且它的圓心在直線.

I)求此圓的方程;

II)若點(diǎn)為所求圓上任意一點(diǎn),且點(diǎn),求線段的中點(diǎn)的軌跡方程.

【答案】1)(x﹣22+y﹣42=10.(2)(x﹣2+y﹣22=

【解析】

試題(1)首先設(shè)出方程,將點(diǎn)坐標(biāo)代入得到關(guān)于參數(shù)的方程組,通過解方程組得到參數(shù)值,從而確定其方程;(2)首先設(shè)出點(diǎn)M的坐標(biāo),利用中點(diǎn)得到點(diǎn)D坐標(biāo),代入圓的方程整理化簡(jiǎn)得到的中點(diǎn)M的軌跡方程

試題解析:()由已知可設(shè)圓心Na,3a﹣2),又由已知得|NA|=|NB|, 從而有,解得:a=2

于是圓N的圓心N2,4),半徑

所以,圓N的方程為(x﹣22+y﹣42=10.(6分)

2)設(shè)Mx,y),Dx1,y1),則由C30)及M為線段CD的中點(diǎn)得:,解得:. 又點(diǎn)D在圓N:(x﹣22+y﹣42=10上,所以有(2x﹣3﹣22+2y﹣42=10,化簡(jiǎn)得:

故所求的軌跡方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:若x2+y2>2,則|x|>1或|y|>1;命題q:直線mx-2y-m-2=0與圓x2+y2-3x+3y+2=0必有兩個(gè)不同交點(diǎn),則下列說法正確的是( )

A. p為真命題 B. p∧(q)為真命題

C. (p)∨q為假命題 D. (p)∨(q)為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都乘以同一個(gè)非零常數(shù)a后,方差也變?yōu)樵瓉淼?/span>a

B.設(shè)有一個(gè)回歸方程,變量x增加1個(gè)單位時(shí),y平均減少5個(gè)單位

C.線性相關(guān)系數(shù)r越大,兩個(gè)變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱

D.在某項(xiàng)測(cè)量中,測(cè)量結(jié)果ξ服從正態(tài)分布N1σ2)(σ0),則Pξ1)=0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點(diǎn)處的切線方程

(2)函數(shù)與函數(shù)的圖像總有兩個(gè)交點(diǎn),設(shè)這兩個(gè)交點(diǎn)的橫坐標(biāo)分別為,.

(。┣的取值范圍

(ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測(cè)出其中一項(xiàng)質(zhì)量指標(biāo)存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲,乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測(cè)出它們的這一項(xiàng)質(zhì)量指標(biāo)值.若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi),則為合格品,否則為不合格品.表1是甲流水線樣本的頻數(shù)分布表,圖1是乙流水線樣本的頻率分布直方圖.

(Ⅰ)根據(jù)圖1,估計(jì)乙流水線生產(chǎn)產(chǎn)品該質(zhì)量指標(biāo)值的中位數(shù);

(Ⅱ)若將頻率視為概率,某個(gè)月內(nèi)甲,乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲,乙兩條流水線分別生產(chǎn)出不合格品約多少件?

(Ⅲ)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有85%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與甲,乙兩條流水線的選擇有關(guān)?

甲生產(chǎn)線

乙生產(chǎn)線

合計(jì)

合格品

不合格品

合計(jì)

附:(其中為樣本容量)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐的四個(gè)頂點(diǎn)在球的球面上,,是邊長(zhǎng)為正三角形,分別是的中點(diǎn),,則球的體積為_________________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】今年年初,中共中央、國(guó)務(wù)院發(fā)布《關(guān)于開展掃黑除惡專項(xiàng)斗爭(zhēng)的通知》,在全國(guó)范圍部署開展掃黑除惡專項(xiàng)斗爭(zhēng).那么這次的“掃黑除惡”專項(xiàng)斗爭(zhēng)與2000年、2006年兩次在全國(guó)范圍內(nèi)持續(xù)開展了十多年的“打黑除惡”專項(xiàng)斗爭(zhēng)是否相同呢?某高校一個(gè)社團(tuán)在年后開學(xué)后隨機(jī)調(diào)查了位該校在讀大學(xué)生,就“掃黑除惡”與“打黑除惡”是否相同進(jìn)行了一次調(diào)查,得到具體數(shù)據(jù)如表:

不相同

相同

合計(jì)

合計(jì)

(1)根據(jù)如上的列聯(lián)表,能否在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“掃黑除惡”與“打黑除惡”是否相同與性別有關(guān)"?

(2)計(jì)算這位大學(xué)生認(rèn)為“掃黑除惡”與“打黑除惡”不相同的頻率,并據(jù)此估算該校名在讀大學(xué)生中認(rèn)為“掃黑除惡”與“打黑除惡”不相同的人數(shù);

(3)為了解該校大學(xué)生對(duì)“掃黑除惡”與“打黑除惡”不同之處的知道情況,該校學(xué)生會(huì)組織部選取位男生和位女生逐個(gè)進(jìn)行采訪,最后再隨機(jī)選取次采訪記錄放到該大學(xué)的官方網(wǎng)站上,求最后被選取的次采訪對(duì)象中至少有一位男生的概率.

參考公式: .

附表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué);虬嗉(jí)舉行活動(dòng),通常需要張貼海報(bào)進(jìn)行宣傳.現(xiàn)讓你設(shè)計(jì)一張如圖所示的豎向張貼的海報(bào),要求版心面積為128 dm2,上、下兩邊各空2 dm,左、右兩邊各空1 dm.如何設(shè)計(jì)海報(bào)的尺寸,才能使四周空白面積最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近期,某超市針對(duì)一款飲料推出刷臉支付活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用刷臉支付.該超市統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用刷臉支付的人次,用表示活動(dòng)推出的天數(shù),表示每天使用刷臉支付的人次,統(tǒng)計(jì)數(shù)據(jù)如下表所示:

1)在推廣期內(nèi),均為大于零的常數(shù))哪一個(gè)適宜作為刷臉支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);

2)根據(jù)(1)的判斷結(jié)果及表中的數(shù)據(jù),求關(guān)于的回歸方程,并預(yù)測(cè)活動(dòng)推出第天使用刷臉支付的人次;

3)已知一瓶該飲料的售價(jià)為元,顧客的支付方式有三種:現(xiàn)金支付、掃碼支付和刷臉支付,其中有使用現(xiàn)金支付,使用現(xiàn)金支付的顧客無優(yōu)惠;有使用掃碼支付,使用掃碼支付享受折優(yōu)惠;有使用刷臉支付,根據(jù)統(tǒng)計(jì)結(jié)果得知,使用刷臉支付的顧客,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為.根據(jù)所給數(shù)據(jù)估計(jì)購(gòu)買一瓶該飲料的平均花費(fèi).

參考數(shù)據(jù):其中,

參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:.

查看答案和解析>>

同步練習(xí)冊(cè)答案