下列函數(shù)中,既是偶函數(shù)又在(0,+∞)單調(diào)遞增的函數(shù)是


  1. A.
    數(shù)學(xué)公式
  2. B.
    y=e|x|
  3. C.
    y=-x2+3
  4. D.
    y=cosx
B
分析:根據(jù)題意,將x用-x代替判斷解析式的情況利用偶函數(shù)的定義判斷出為偶函數(shù),然后根據(jù)反比例函數(shù)、對(duì)數(shù)函數(shù)、二次函數(shù)、三角數(shù)函數(shù)進(jìn)行判定單調(diào)性即可得到結(jié)論.
解答:對(duì)于y=-函數(shù)的定義域?yàn)閧x|x≠0},f(-x)=-f(x),則該函數(shù)為奇函數(shù),A不合題意
對(duì)于y=e|x|函數(shù)的定義域?yàn)閤∈R,將x用-x代替函數(shù)的解析式不變,
所以y=e|x|是偶函數(shù),但函數(shù)y=e|x|在(0,+∞)上單調(diào)單調(diào)遞增,B符合題意
對(duì)于y=-x2+3函數(shù)的定義域?yàn)閤∈R,將x用-x代替函數(shù)的解析式不變,
所以y=-x2+3是偶函數(shù),但函數(shù)y=-x2+3在(0,+∞)上單調(diào)單調(diào)遞減,C不合題意
對(duì)于y=cosx函數(shù)的定義域?yàn)閤∈R,將x用-x代替函數(shù)的解析式不變,
所以y=cosx是偶函數(shù),但函數(shù)y=cosx在(0,+∞)上不單調(diào),D不合題意
故選B.
點(diǎn)評(píng):本題主要考查了奇函數(shù)、偶函數(shù)的定義,以及常見函數(shù)的單調(diào)性的判定,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•房山區(qū)一模)下列函數(shù)中,既是偶函數(shù)又在(0,+∞)單調(diào)遞增的函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的函數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,既是偶函數(shù)又在(0,+∞)單調(diào)遞增的函數(shù)是
(2)
(2)

(1)y=x3;    (2)y=|x|+1;   (3)y=-x2+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•揭陽(yáng)二模)下列函數(shù)中,既是偶函數(shù)又在(0,+∞)單調(diào)遞增的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案