【題目】某校做了一次關(guān)于“感恩父母”的問卷調(diào)查,從8~10歲,11~12歲,13~14歲,15~16歲四個(gè)年齡段回收的問卷依次為:120份,180份,240份,x份.因調(diào)查需要,從回收的問卷中按年齡段分層抽取容量為300的樣本,其中在11~12歲學(xué)生問卷中抽取60份,則在15~16歲學(xué)生中抽取的問卷份數(shù)為( )

A.60 B.80 C.120 D.180

【答案】C

解析11~12歲的學(xué)生中回收180份問卷從中抽取60份,則抽樣比為.

從回收的問卷中按年齡段分層抽取容量為300的樣本,

從8~10歲,11~12歲,13~14歲,15~16歲四個(gè)年齡段回收的問卷總數(shù)為(份),則15~16歲回收問卷份數(shù)為x=900-120-180-240=360(份).

在15~16歲學(xué)生中抽取的問卷份數(shù)為360×=120(份),故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若在區(qū)間上存在不相等的實(shí)數(shù),使成立,求的取值范圍;

(Ⅲ)若函數(shù)有兩個(gè)不同的極值點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論正確的是( )

A. 空間中不同三點(diǎn)確定一個(gè)平面

B. 空間中兩兩相交的三條直線確定一個(gè)平面

C. 一條直線和一個(gè)點(diǎn)能確定一個(gè)平面

D. 梯形一定是平面圖形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的通項(xiàng)公式,數(shù)列滿足,為數(shù)列的前項(xiàng)和。

I;

II若對(duì)任意的不等式恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】慶華租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時(shí),可全部租出,當(dāng)每輛車的月租金每增加50元時(shí),未租出的車將會(huì)增加一輛,租出的車每輛每月需維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.

1)當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?

2)當(dāng)每輛車的月租金定為多少元時(shí),租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

12月1日

12月2日

12月3日

12月4日

12月5日

溫差x°C

10

11

13

12

8

發(fā)芽數(shù)y

23

25

30

26

16

1請根據(jù)12月2日12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程其中已計(jì)算出

2若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)選取檢驗(yàn)數(shù)據(jù)是12月1日與12月5日的兩組數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問2中所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】復(fù)數(shù)2+3i的共軛復(fù)數(shù)是(

A. -2+3i B. 2-3i C. -2-3i D. 3-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三段論推理“①矩形是平行四邊形;②正方形是矩形;③正方形是平行四邊形”中的小前提是 (填寫序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)抽取某中學(xué)高一級(jí)學(xué)生的一次數(shù)學(xué)統(tǒng)測成績得到一樣本,其分組區(qū)間和頻數(shù)是:,2;,7;,10;,x;[90,100],2.其頻率分布直方圖受到破壞,可見部分如下圖所示,據(jù)此解答如下問題.

1求樣本的人數(shù)及x的值;

2估計(jì)樣本的眾數(shù),并計(jì)算頻率分布直方圖中的矩形的高;

3從成績不低于80分的樣本中隨機(jī)選取2人,該2人中成績在90分以上含90分的人數(shù)記為,求的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案