已知函數(shù)數(shù)學(xué)公式滿足ax•f(x)=2bx+f(x),a≠0,f(1)=1;且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)若數(shù)列{an}滿足數(shù)學(xué)公式,an+1=f(an),數(shù)學(xué)公式,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式.

解:(Ⅰ)由ax•f(x)=2bx+f(x),,a≠0,得.…(2分)
由f(1)=1,得a=2b+1.…(3分)
由f(x)=2x只有一解,即,也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴4(1+b)2-4×2a×0=0
∴b=-1.…(5分)
∴a=-1.
.…(6分)
(Ⅱ)解法一:∵,an+1=f(an),
,,,…(7分)
猜想,.…(8分)
下面用數(shù)學(xué)歸納法證明:
①當(dāng)n=1時(shí),左邊=,右邊=,∴命題成立.…(10分)
②假設(shè)n=k時(shí),命題成立,即;
當(dāng) n=k+1時(shí),,
∴當(dāng) n=k+1時(shí),命題成立.…(12分)
由①②可得,當(dāng)n∈N*時(shí),有.…(13分)
,
a1=2
∴{bn}是首項(xiàng)為2,公比為2的等比數(shù)列,其通項(xiàng)公式為bn=2n.…(14分)
解法二:∵,
…(8分)
,…(10分)
…(12分)
則數(shù)列{bn}是以b1=2為首項(xiàng)2為公比的等比數(shù)列,bn=2n,(n∈N*)…(14分)
分析:(Ⅰ)先將函數(shù)化為,利用f(1)=1,得a=2b+1.根據(jù)f(x)=2x只有一解,可得2ax2-2(1+b)x=0(a≠0)只有一解,從而可求b,a的值;
(Ⅱ)解法一:先猜想,.再用數(shù)學(xué)歸納法證明,關(guān)鍵是假設(shè)n=k時(shí),命題成立,即;證明 n=k+1時(shí),,從而得證,進(jìn)而可求{bn}的通項(xiàng)公式;
解法二:根據(jù),可得,利用,可得結(jié)論.
點(diǎn)評(píng):本題以函數(shù)為載體,考查函數(shù)的性質(zhì),考查函數(shù)解析式的求解,考查數(shù)列通項(xiàng)公式的求解,考查數(shù)學(xué)歸納法的運(yùn)用,正確理解題意是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2008年天河區(qū)理科數(shù)學(xué)模擬卷(一) 題型:044

解答須寫出文字說明、證明過程和演算步驟.

已知函數(shù)滿足ax·f(x)=2bx+f(x),a≠0,f(x)=1;且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).

(Ⅰ)求函數(shù)f(x)的表達(dá)式;

(Ⅱ)若數(shù)列{an}滿足,an+1=f(an),,n∈*,證明:

數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;

(Ⅲ)在(Ⅱ)的條件下,證明:a1b1+a2b2+…+anbn<1,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式滿足ax-f(x)=2bx+f(x),a≠0,f(1)=1;且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)若數(shù)列an滿足數(shù)學(xué)公式,數(shù)學(xué)公式,證明數(shù)列bn是等比數(shù)列,并求出bn的通項(xiàng)公式;
(Ⅲ)在(Ⅱ)的條件下,證明:a1b1+a2b2+…+anbn<1,n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年浙江省溫州市十校聯(lián)合體高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)滿足ax-f(x)=2bx+f(x),a≠0,f(1)=1;且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)若數(shù)列an滿足,,證明數(shù)列bn是等比數(shù)列,并求出bn的通項(xiàng)公式;
(Ⅲ)在(Ⅱ)的條件下,證明:a1b1+a2b2+…+anbn<1,n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省鹽城市東臺(tái)市高二(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)滿足ax-f(x)=2bx+f(x),a≠0,f(1)=1;且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)若數(shù)列an滿足,,證明數(shù)列bn是等比數(shù)列,并求出bn的通項(xiàng)公式;
(Ⅲ)在(Ⅱ)的條件下,證明:a1b1+a2b2+…+anbn<1,n∈N+

查看答案和解析>>

同步練習(xí)冊(cè)答案