已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0.
(1)求證:無論m為何值,直線L與圓C恒有兩個(gè)公共點(diǎn);
(2)當(dāng)m為何值時(shí),直線被圓截得的弦最短,最短的弦長是多少?
考點(diǎn):直線與圓相交的性質(zhì)
專題:計(jì)算題,直線與圓
分析:(1)通過直線l轉(zhuǎn)化為直線系,求出直線恒過的定點(diǎn);
(2)說明直線l被圓C截得的弦長最小時(shí),圓心與定點(diǎn)連線與直線l垂直,求出斜率即可求出m的值,再由勾股定理即可得到最短弦長.
解答: (1)證明:將l的方程整理為(x+y-4)+m(2x+y-7)=0,
x+y-4=0
2x+y-7=0
,解得x=3,y=1,
則無論m為何值,直線l過定點(diǎn)D(3,1).
(2)解:因?yàn)椋?-1)2+(1-2)2=5<25,
則點(diǎn)D在圓C的內(nèi)部,直線l與圓C相交.
圓心C(1,2),半徑為5,|CD|=
(3-1)2+(1-2)2
=
5
,
當(dāng)截得的弦長最小時(shí),l⊥CD,由于kCD=
2-1
1-3
=-
1
2
,
則l的斜率為2,即有-
2m+1
m+1
=2,解得m=-
3
4

此時(shí)最短弦長為2
52-5
=4
5
,
故當(dāng)m=-
3
4
時(shí),直線被圓截得的弦最短,最短的弦長是4
5
點(diǎn)評:本題考查直線系方程的應(yīng)用,考查直線與圓的位置關(guān)系,考查平面幾何知識的運(yùn)用,考查計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x2+4
+
(x-2)2+1
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,D在BC上,
BD
=2
DC
,設(shè)
AB
=
a
,
AC
=
b
,則
AD
=( 。
A、
2
3
a
+
1
3
b
B、
1
3
a
+
2
3
b
C、
1
2
a
+
1
2
b
D、
1
2
a
-
1
2
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于在區(qū)間[a,b]上有意義的兩個(gè)函數(shù)f(x)和g(x),如果對于任意x∈[a,b]均有|f(x)-g(x)|≤1成立,則稱函數(shù)f(x)和g(x)在區(qū)間[a,b]上是接近的.若f(x)=log2(ax+1)與g(x)=log2x在區(qū)[1,2]上是接近的,則實(shí)數(shù)a的取值范圍是(  )
A、?[0,1]
B、[2,3]
C、[0,2)
D、(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的程序框圖,任意輸入一次x(x∈Z,-2≤x≤2)與y(y∈Z,-2≤y≤2),則能輸出數(shù)對(x,y)的概率為(  )
A、
9
25
B、
1
2
C、
1
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:“a=b”是“ac=bc”充要條件;q:“a<5”是“a<3”的必要不充分條件,則下列判斷中,錯(cuò)誤的是(  )
A、p或q為真,非q為假
B、p或q為真,非p為真
C、p且q為假,非p為假
D、p且q為假,p或q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一張坐標(biāo)紙折疊一次,使點(diǎn)A(10,0)與點(diǎn)B(-6,8)重合.
(1)求折痕所在直線的方程;
(2)求與點(diǎn)C(-4,2)重合的點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線ax-by=0與圓x2+y2-ax+by=0(a2+b2≠0)得位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場對顧客實(shí)行購物優(yōu)惠活動(dòng),規(guī)定購物付款總額要求如下:
①如果一次性購物不超過200元,則不給予優(yōu)惠;
②如果一次性購物超過200元但不超過500元,則按標(biāo)價(jià)給予9折優(yōu)惠;
③如果一次性購物超過500元,則500元按第②條給予優(yōu)惠,剩余部分給予7折優(yōu)惠.
甲單獨(dú)購買A商品實(shí)際付款100元,乙單獨(dú)購買B商品實(shí)際付款450元,若丙一次性購買A,B兩件商品,則應(yīng)付款
 
元.

查看答案和解析>>

同步練習(xí)冊答案