在如圖所示的幾何體中,四邊形ABDE為梯形,AE∥BD,AE⊥平面ABC,AC⊥BC,AC=BC=BD=2AE,M為AB的中點(diǎn);
(1)求證:CM⊥DE;
(2)求銳二面角D-EC-M的余弦值.

【答案】分析:(1)證明CM⊥DE,只需證明CM⊥平面ABDE,利用AE⊥CM,CM⊥AB即可證明;
(2)過M作MO⊥AC,則MO⊥平面AEDC,作MF⊥EC,連接OF,則OF⊥EC,故∠MFO為銳二面角D-EC-M的平面角,從而可求.
解答:(1)證明:∵AE⊥平面ABC,CM?平面ABC,
∴AE⊥CM
∵AC=BC,M為AB的中點(diǎn)
∴CM⊥AB,又AB∩AE=A
∴CM⊥平面ABDE
∵DE?平面ABDE
∴CM⊥DE;
(2)解:∵AE⊥平面ABC,AE?平面AEDC
∴平面AEDC⊥平面ABC
過M作MO⊥AC,則MO⊥平面AEDC
作MF⊥EC,連接OF,則OF⊥EC,
∴∠MFO為銳二面角D-EC-M的平面角
設(shè)AC=BC=BD=2AE=2a,則AM=MC=,∴MO=a
△EMC中,,
∴△EMC是直角三角形,
a
∴cos∠MFO==
點(diǎn)評(píng):本題考查線面垂直,考查面面角,解題的關(guān)鍵是掌握線面垂直的判定與性質(zhì),正確作出面面角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,四邊形ABCD、ADEF、ABGF均為全等的直角梯形,且BC∥AD,AB=AD=2BC.
(Ⅰ)求證:CE∥平面ABGF;
(Ⅱ)求二面角G-CE-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,平行四邊形ABCD的頂點(diǎn)都在以AC為直徑的圓O上,AD=CD=DP=a,AP=CP=
2
a,DP∥AM,且AM=
1
2
DP,E,F(xiàn)分別為BP,CP的中點(diǎn).
(I)證明:EF∥平面ADP;
(II)求三棱錐M-ABP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)一模)在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EF=1,BC=
13
,且M是BD的中點(diǎn).
(Ⅰ)求證:EM∥平面ADF;
(Ⅱ)在EB上是否存在一點(diǎn)P,使得∠CPD最大?若存在,請(qǐng)求出∠CPD的正切值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,AB∥CD,AB=2BC,∠ABC=60°,AC⊥FB.
(Ⅰ)求證:AC⊥平面FBC;
(Ⅱ)線段ED上是否存在點(diǎn)Q,使平面EAC⊥平面QBC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在如圖所示的幾何體中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,AC=BC=BD=2AE=2,M是AB的中點(diǎn). 
(1)求證:CM⊥平面ABDE;
(2)求幾何體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案