【題目】某中學(xué)一位高三班主任對本班50名學(xué)生學(xué)習(xí)積極性和對班級工作的態(tài)度進行調(diào)查, 得倒的統(tǒng)計數(shù)據(jù)如表所示:

(1)如果隨機調(diào)查這個班的一名學(xué)生,那么抽到不積極參加班級工作且學(xué)習(xí)積極性不高的學(xué)生的概率是多少?

(2)若不積極參加班級工作的且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取2名學(xué)生參加某項活動,問2名學(xué)生中有1名男生的概率是多少?

(3)學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度是否有關(guān)系?請說明理由.

【答案】(1);(2);(3)有的把握.

【解析】試題分析:

(1)利用人數(shù)可得概率

(2) 利用題意列出所有可能的事件,結(jié)合古典概型公式可得.

(3)由列聯(lián)表求得,故有的把握認為“學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度”有關(guān)系.

試題解析:

(1)由題知,不積極參加班級工作且學(xué)習(xí)積極性不高的學(xué)生有19人,總?cè)藬?shù)為50人,所以;

(2)設(shè)這7名學(xué)生分別為(大寫為男生),則從中抽取兩名學(xué)生的情況有: ,,共21種情況,其中有1名男生的有10種情況,∴.

(3)由題意得, ,故有的把握認為“學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度” 有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=x+ ﹣2.
(1)證明:函數(shù)g(x)在[ ,+∞)上是增函數(shù);
(2)若不等式g(2x)﹣k2x≥0在x∈[﹣1,1]上有解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)給出的一個取值,使得曲線存在斜率為的切線,并說明理由;

(Ⅱ)若存在極小值和極大值,證明: 的極小值大于極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是公比為正數(shù)的等比數(shù)列, .

(1)求的通項公式;

(2)設(shè)是首項為1,公差為2的等差數(shù)列,求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某重點高中擬把學(xué)校打造成新型示范高中,為此制定了學(xué)生“七不準”,“一日三省十問”等新的規(guī)章制度.新規(guī)章制度實施一段時間后,學(xué)校就新規(guī)章制度隨機抽取部分學(xué)生進行問卷調(diào)查,調(diào)查卷共有10個問題,每個問題10分,調(diào)查結(jié)束后,按分數(shù)分成5組: , , , , ,并作出頻率分布直方圖與樣本分數(shù)的莖葉圖(圖中僅列出了得分在, 的數(shù)據(jù)).

1)求樣本容量和頻率分布直方圖中的的值;

2)在選取的樣本中,從分數(shù)在70分以下的學(xué)生中隨機抽取2名學(xué)生進行座談會,求所抽取的2名學(xué)生中恰有一人得分在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了鼓勵市民節(jié)約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按0.5元/度收費,超過200度但不超過400度的部分按0.8元/度收費,超過400度的部分按1.0元/度收費.

(1)求某戶居民用電費用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;

2)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費用不超過260元的點80%,求的值;

(3)在滿足(2)的條件下,估計1月份該市居民用戶平均用電費用(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 是坐標原點, 分別為其左右焦點, , 是橢圓上一點, 的最大值為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓交于兩點,且

(i)求證: 為定值;

(ii)求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x>0,y>0,且x+y=1,求:
(1)x2+y2的最小值;
(2) + + 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間他們參加的5次預(yù)寒成績記錄如下:

甲:82,82,79,95,87

乙:95,75,80,90,85

(1)用莖葉圖表示這兩組數(shù)據(jù);

(2)求甲、乙兩人成績的平均數(shù)與方差;

(3)若現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,你認為選派哪位學(xué)生參加合適,說明理由?

查看答案和解析>>

同步練習(xí)冊答案