9.函數(shù)$f(x)=\sqrt{{x^2}+4x-12}$的單調(diào)減區(qū)間為( 。
A.[-2,+∞)B.(-∞,-2]C.(-∞,-6]D.[2,+∞)

分析 由題意,將函數(shù)分解成基本函數(shù),利用復(fù)合函數(shù)與內(nèi)層函數(shù)和外層函數(shù)單調(diào)性之間的關(guān)系“同增異減”進(jìn)行判斷

解答 解:函數(shù)$f(x)=\sqrt{{x^2}+4x-12}$,
令函數(shù)t=x2+4x-12=(x-6)(x+2),
∵t≥0,
∴-6≥x或x≥2.
則函數(shù)$f(x)=\sqrt{{x^2}+4x-12}$轉(zhuǎn)化為g(t)=${t}^{\frac{1}{2}}$,在t≥0是單調(diào)遞增,
根據(jù)二次函數(shù)性質(zhì)可知,函數(shù)t開口向上,對(duì)稱軸x=-2,
則x在(-∞-6]單調(diào)遞減,在[2,+∞)單調(diào)遞增.
復(fù)合函數(shù)單調(diào)性“同增異減”.
可得函數(shù)f(x)的單調(diào)減區(qū)間(-∞-6].
故選:C.

點(diǎn)評(píng) 本題主要考查了復(fù)合函數(shù)的單調(diào)性以及單調(diào)區(qū)間的求法.對(duì)應(yīng)復(fù)合函數(shù)的單調(diào)性,一要注意先確定函數(shù)的定義域,二要利用復(fù)合函數(shù)與內(nèi)層函數(shù)和外層函數(shù)單調(diào)性之間的關(guān)系進(jìn)行判斷,判斷的依據(jù)是“同增異減”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=x2-2x+7.
(1)求f(2)的值;
(2)求f(x-1)和f(x+1)的解析式;
(3)求f(x+1)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)y=loga(2x+1)-3必過的定點(diǎn)是(  )
A.(1,0)B.(0,1)C.(0,-3)D.(1,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某農(nóng)場(chǎng)預(yù)算用5600元購買單價(jià)為50元(每噸)的鉀肥和20元(每噸)的氮肥,希望使兩種肥料的總數(shù)量(噸)盡可能的多,但氮肥數(shù)不少于鉀肥數(shù),且不多于鉀肥數(shù)的1.5倍.
(Ⅰ)設(shè)買鉀肥x噸,買氮肥y噸,按題意列出約束條件、畫出可行域,并求鉀肥、氮肥各買多少才行?
(Ⅱ)已知A(10,0),O是坐標(biāo)原點(diǎn),P(x,y)在(Ⅰ)中的可行域內(nèi),求$s=\frac{{\overrightarrow{OA}•\overrightarrow{OP}}}{{|{\overrightarrow{OP}}|}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知y=f(x)是定義在R上的增函數(shù)且為奇函數(shù),若對(duì)任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,則當(dāng)x>3時(shí),x2+y2的取值范圍是( 。
A.(3,7)B.(9,25)C.(13,49)D.(9,49)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.給出下列四個(gè)命題:
(1)函數(shù)f(x)=loga(2x-1)-1的圖象過定點(diǎn)(1,0);
(2)化簡2${\;}^{{{log}_{\sqrt{2}}}5}}$+lg5lg2+(lg2)2-lg2的結(jié)果為25;
(3)若loga$\frac{1}{2}$<1,則a的取值范圍是(1,+∞);
(4)若2-x-2y>lnx-ln(-y)(x>0,y<0),則x+y<0.
其中所有正確命題的序號(hào)是(2)(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知f(2x-3)=x2+x+1,求f(x)=$\frac{1}{4}{x^2}+2x+\frac{19}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)A的極坐標(biāo)為(3,$\frac{π}{2}$),點(diǎn)B的極坐標(biāo)為(6,$\frac{π}{6}$),曲線C:(x-1)2+y2=1
(1)求曲線C和直線AB的極坐標(biāo)方程;
(2)過點(diǎn)O的射線l交曲線C于M點(diǎn),交直線AB于N點(diǎn),若|OM||ON|=2,求射線l所在直線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=$\frac{ln(x+2)}{\sqrt{x-1}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(-2,+∞)B.(1,+∞)C.(-2,1)D.[1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案