【題目】某地4個(gè)蔬菜大棚頂部,陽光照在一棵棵茁壯生長的蔬菜上.這些采用水培、無土栽培方式種植的各類蔬菜,成為該地區(qū)居民爭相購買的對象.過去50周的資料顯示,該地周光照量(小時(shí))都在30以上.其中不足50的周數(shù)大約有5周,不低于50且不超過70的周數(shù)大約有35周,超過70的大約有10周.根據(jù)統(tǒng)計(jì)某種改良黃瓜每個(gè)蔬菜大棚增加量(百斤)與每個(gè)蔬菜大棚使用農(nóng)夫1號液體肥料(千克)之間對應(yīng)數(shù)據(jù)為如圖所示的折線圖:

(Ⅰ)依據(jù)數(shù)據(jù)的折線圖,用最小二乘法求出關(guān)于的線性回歸方程;并根據(jù)所求線性回歸方程,估計(jì)如果每個(gè)蔬菜大棚使用農(nóng)夫1號肥料10千克,則這種改良黃瓜每個(gè)蔬菜大棚增加量是多少斤?

(Ⅱ)因蔬菜大棚對光照要求較大,某光照控制儀商家為應(yīng)對惡劣天氣對光照的影響,為該基地提供了部分光照控制儀,該商家希望安裝的光照控制儀盡可能運(yùn)行,但每周光照控制儀最多可運(yùn)行臺數(shù)受周光照量限制,并有如下關(guān)系:

周光照量(單位:小時(shí))

光照控制儀最多可運(yùn)行臺數(shù)

3

2

1

若某臺光照控制儀運(yùn)行,則該臺光照控制儀周利潤為5000元;若某臺光照控制儀未運(yùn)行,則該臺光照控制儀周虧損800元,欲使商家周總利潤的均值達(dá)到最大,應(yīng)安裝光照控制儀多少臺?

附:回歸方程系數(shù)公式:

【答案】(1) ;(2).

【解析】試題分析:(Ⅰ)算出樣本中心點(diǎn)的坐標(biāo),利用公式求得,由可得,即可得回歸方程,再將時(shí)代入即可得結(jié)果;(Ⅱ)分別求出安裝2臺光照控制儀的周利潤的均值、安裝3臺光照控制儀的均值,與安裝1臺光照控制儀可獲得周利潤進(jìn)行比較即可得結(jié)果.

試題解析:(Ⅰ) ,

,

所以關(guān)于的線性回歸方程為,

當(dāng)時(shí), 百斤=550斤,

所以估計(jì)如果每個(gè)蔬菜大棚使用農(nóng)夫1號肥料10千克,則這種改良黃瓜每個(gè)蔬菜大棚增加量是500斤.

(Ⅱ)記商家總利潤為元,由已知條件可知至少需安裝1臺,

①安裝1臺光照控制儀可獲得周利潤5000元,

②安裝2臺光照控制儀的情形:

當(dāng)時(shí),一臺光照控制儀運(yùn)行,此時(shí)元,

當(dāng)時(shí),兩臺光照控制儀都運(yùn)行,此時(shí)元,

的分布列為

4200

10000

0.2

0.8

所以元,

③安裝3臺光照控制儀的情形:

當(dāng)時(shí),一臺光照控制儀運(yùn)行,此時(shí)元,

當(dāng)時(shí),兩臺光照控制儀運(yùn)行,此時(shí)元,

當(dāng)時(shí),三臺光照控制儀都運(yùn)行,此時(shí)元,

的分布列為

3400

9200

15000

0.2

0.7

0.1

所以元,

綜上,為使商家周總利潤的均值達(dá)到最大應(yīng)該安裝2臺光照控制儀.

【方法點(diǎn)晴】本題主要考查線性回歸方程及離散型隨機(jī)變量的分布列與數(shù)學(xué)期望,屬于難題.求回歸直線方程的步驟:①依據(jù)樣本數(shù)據(jù)確定兩個(gè)變量具有線性相關(guān)關(guān)系;②計(jì)算的值;③計(jì)算回歸系數(shù);④寫出回歸直線方程為;(2) 回歸直線過樣本點(diǎn)中心是一條重要性質(zhì),利用線性回歸方程可以估計(jì)總體,幫助我們分析兩個(gè)變量的變化趨勢.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2x+a
(1)當(dāng) 時(shí),求不等式f(x)>1的解集;
(2)若對于任意x∈[1,+∞),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)ae2x+(a﹣2) exx.

(1)討論的單調(diào)性;

(2)若有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個(gè)數(shù)是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)化肥廠生產(chǎn)甲種混合肥料1車皮、乙種混合肥料1車皮所需要的主要原料如表:

原料
種類

磷酸鹽(單位:噸)

硝酸鹽(單位:噸)

4

20

2

20

現(xiàn)庫存磷酸鹽8噸、硝酸鹽60噸,計(jì)劃在此基礎(chǔ)上生產(chǎn)若干車皮的甲、乙兩種混合肥料.
(1)設(shè)x,y分別表示計(jì)劃生產(chǎn)甲、乙兩種肥料的車皮數(shù),試列出x,y滿足的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)若生產(chǎn)1車皮甲種肥料,利潤為3萬元;生產(chǎn)1車皮乙種肥料,利潤為2萬元.那么分別生產(chǎn)甲、乙兩種肥料多少車皮,能夠產(chǎn)生最大利潤?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】各棱長都等于4的四面ABCD中,設(shè)G為BC的中點(diǎn),E為△ACD內(nèi)的動(dòng)點(diǎn)(含邊界),且GE∥平面ABD,若 =1,則| |=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=3ax2﹣2(a+b)x+b,(0≤x≤1)其中a>0,b為任意常數(shù).
(I)若b= ,f(x)=|x﹣ |在x∈[0,1]有兩個(gè)不同的解,求實(shí)數(shù)a的范圍.
(II)當(dāng)|f(0)|≤2,|f(1)|≤2時(shí),求|f(x)|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx2 , 在x=1處有極大值3,則f(x)的極小值為(
A.0
B.1
C.2
D.﹣3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場舉行抽獎(jiǎng)活動(dòng),從裝有編號0,1,2,3四個(gè)小球的抽獎(jiǎng)箱中,每次取出后放回,連續(xù)取兩次,取出的兩個(gè)小球號碼相加之和等于5中一等獎(jiǎng),等于4中二等獎(jiǎng),等于3中三等獎(jiǎng).
(1)求中三等獎(jiǎng)的概率;
(2)求中獎(jiǎng)的概率.

查看答案和解析>>

同步練習(xí)冊答案