已知二次函數(shù)f(x)=x2+bx+c(b,c∈R).
(1)若f(-1)=f(2),且不等式x≤f(x)≤2|x-1|+1對(duì)x∈[0,2]恒成立,求函數(shù)f(x)的解析式;
(2)若c<0,且函數(shù)f(x)在[-1,1]上有兩個(gè)零點(diǎn),求2b+c的取值范圍.
考點(diǎn):二次函數(shù)的性質(zhì),函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)因?yàn)閒(-1)=f(2),不等式x≤f(x)≤2|x-1|+1對(duì)x∈[0,2]恒成立,函數(shù)的對(duì)稱軸為x=
1
2
,且f(1)=1,進(jìn)而可得b,c的值,及函數(shù)f(x)的解析式;
(2)若c<0,且函數(shù)f(x)在[-1,1]上有兩個(gè)零點(diǎn),則
f(-1)≥0
f(1)≥0
c<0
,利用線性規(guī)劃可得2b+c的取值范圍.
解答: 解:(1)因?yàn)閒(x)=x2+bx+c,f(-1)=f(2),
所以1-b+c=4+2b+c,
解得:b=-1,…(3分)
因?yàn)楫?dāng)x∈[0,2],
都有x≤f(x)≤2|x-1|+1,
令x=1,則1≤f(1)≤1,
所以有f(1)=1,…(6分)
即c=1,
所以f(x)=x2-x+1;          …(7分)
(2)因?yàn)閒(x)在[-1,1]上有兩個(gè)零點(diǎn),且c<0,
所以有
f(-1)≥0
f(1)≥0
c<0
,
-b+c+1≥0
b+c+1≥0
c<0

其對(duì)應(yīng)的平面區(qū)域如圖所示:
 …(11分)
令Z=2b+c,
則當(dāng)b=-1,c=0時(shí),Z取最小值-2,
當(dāng)b=1,c=0時(shí),Z取最大值2,
由于可行域不包括(-1,0)和(1,0)點(diǎn)
故-2<2b+c<2(12分)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),函數(shù)的零點(diǎn),線性規(guī)劃,難度中檔.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y2=4x,雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0),若C1的焦點(diǎn)恰為C2的右焦點(diǎn),則2a+b的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算下列各式的值
1
4
-1+(
1
6
6
 
1
3
+
3
+
2
3
-
2
-(1.03)0•(-
6
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x-cos2x-
1
2

(1)求函數(shù)f(x)在[0,
π
2
]的最大值和最小值,并給出取得最值時(shí)的x值;
(2)設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a,b,c,且c=
3
,f(C)=0,若sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
1
2
,直線l:x-my-1=0(m∈R)過橢圓C的右焦點(diǎn)F,且交橢圓C于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)D(
5
2
,0),連結(jié)BD,過點(diǎn)A作垂直于y軸的直線l1,設(shè)直線l1與直線BD交于點(diǎn)P,試探索當(dāng)m變化時(shí),是否存在一條定直線l2,使得點(diǎn)P恒在直線l2上?若存在,請(qǐng)求出直線l2的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知邊長(zhǎng)為2的正三角形ABC的重心為G,其中M,N分別在AB,AC邊上,且
AM
=2
MB
,2
AN
=
NC
,則|
GM
|=
 
|
GN
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx-3sin2x-cos2x+2.
(1)當(dāng)x∈[0,
π
2
]時(shí),求f(x)的值域;
(2)若△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足
b
a
=
3
sin(2A+C)
sinA
=2+2cos(A+C),求f(B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD-A1B1C1D1是底面為正方形的長(zhǎng)方體,A1D1=2,A1A=2
3
,點(diǎn)P為動(dòng)點(diǎn),
(1)當(dāng)P為AD1得中點(diǎn)時(shí),求異面直線AA1與B1P所成角的余弦值;
(2)當(dāng)PB1與平面AA1D1所成角的正切值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)結(jié)論:
(1)如圖Rt△ABC中,|AC|=2,∠B=90°,∠C=30°.D是斜邊AC上的點(diǎn),|CD|=|CB|.以B為起點(diǎn)任作一條射線BE交AC于E點(diǎn),則E點(diǎn)落在線段CD上的概率是
3
2
;
(2)設(shè)某大學(xué)的女生體重y(kg)與身高x(cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的線性回歸方程為
y
=0.85x-85.71,則若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg;
(3)為調(diào)查中學(xué)生近視情況,測(cè)得某校男生150名中有80名近視,在140名女生中有70名近視.在檢驗(yàn)這些學(xué)生眼睛近視是否與性別有關(guān)時(shí),應(yīng)該用獨(dú)立性檢驗(yàn)最有說服力;
(4)已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),P(ξ≤4)=0.79,則P(ξ≤-2)=0.21;其中正確結(jié)論的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案