【題目】人們隨著生活水平的提高,健康意識逐步加強,健身開始走進人們生活,在健身方面投入越來越多,為了調(diào)查參與健身的年輕人一年健身的花費情況,研究人員在地區(qū)隨機抽取了參加健身的青年男性、女性各50名,將其花費統(tǒng)計情況如下表所示:

分組(花費)

頻數(shù)

6

22

25

35

8

4

男性

女性

合計

健身花費不超過2400

23

健身花費超過2400

20

合計

1)完善二聯(lián)表中的數(shù)據(jù);

2)根據(jù)表中的數(shù)據(jù)情況,判斷是否有99%的把握認為健身的花費超過2400元與性別有關(guān);

3)求這100名被調(diào)查者一年健身的平均花費(同一組數(shù)據(jù)用該區(qū)間的中點值代替).

附:

P(K2k)

0.10

0.05

0.025

0.01

k

2.706

3.841

5.024

6.635

【答案】1)見解析;2)沒有99%的把握;(3元.

【解析】

1)根據(jù)頻數(shù)表提取數(shù)據(jù),并填入列聯(lián)表中;

2)將數(shù)據(jù)代入卡方系數(shù)計算公式中,并與6.635進行比較,即可得答案;

(3)根據(jù)題意直接計算樣本數(shù)據(jù)的平均值,即可得答案.

1

男性

女性

合計

健身花費不超過2400

23

30

53

健身花費超過2400

27

20

47

合計

50

50

100

2)∵,

∴沒有99%的把握認為健身的花費超過2400元與性別有關(guān).

(3)平均費用為,則

.

∴這100名被調(diào)查者一年健身的平均花費.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】對于兩個定義域均為D的函數(shù)fx),gx),若存在最小正實數(shù)M,使得對于任意x∈D,都有|fx)-gx|≤M,則稱M為函數(shù)fx),gx)的差距,并記作||fx),gx||

1)求fx)=sinxx∈R),gx)=cosxx∈R)的差距;

2)設(shè)fx)=x∈[1,]),gx)=mlnx x∈[1,]).(e≈2.718

m2,且||fx),gx||1,求滿足條件的最大正整數(shù)a

a2,且||fx),gx||2,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,右焦點到直線的距離為.

1)求橢圓的方程;

2)過點作與坐標軸不垂直的直線與橢圓交于,兩點,在軸上是否存在點,使得為正三角形,若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)x0).

1)若a1,f(x)在(0,+)上是單調(diào)增函數(shù),求b的取值范圍;

2)若a≥2,b1,求方程在(0,1]上解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知梯形中,,,四邊形為矩形,,平面平面

Ⅰ)求證:平面;

Ⅱ)求平面與平面所成銳二面角的余弦值;

Ⅲ)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C(a>b>0)的左.右頂點分別為A,B,離心率為,點P為橢圓上一點.

(1) 求橢圓C的標準方程;

(2) 如圖,過點C(01)且斜率大于1的直線l與橢圓交于M,N兩點,記直線AM的斜率為k1,直線BN的斜率為k2,若k12k2,求直線l斜率的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某職稱晉級評定機構(gòu)對參加某次專業(yè)技術(shù)考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示),規(guī)定80分及以上者晉級成功,否則晉級失。

晉級成功

晉級失敗

合計

16

50

合計

(1)求圖中的值;

(2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認為“晉級成功”與性別有關(guān)?

(3)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數(shù)為,求的分布列與數(shù)學期望

(參考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為,以原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ2cosθ.

1)若曲線C1方程中的參數(shù)是α,且C1C2有且只有一個公共點,求C1的普通方程;

2)已知點A0,1),若曲線C1方程中的參數(shù)是t,0απ,且C1C2相交于P,Q兩個不同點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2014年7月18日15時,超強臺風“威馬遜”登陸海南省.據(jù)統(tǒng)計,本次臺風造成全省直接經(jīng)濟損失119.52億元.適逢暑假,小明調(diào)查住在自己小區(qū)的50戶居民由于臺風造成的經(jīng)濟損失,作出如下頻率分布直方圖:

經(jīng)濟損失

4000元以下

經(jīng)濟損失

4000元以上

合計

捐款超過500元

30

捐款低于500元

6

合計

(1)臺風后區(qū)委會號召小區(qū)居民為臺風重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如上表,在表格空白處填寫正確數(shù)字,并說明是否有以上的把握認為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟損失是否到4000元有關(guān)?

(2)臺風造成了小區(qū)多戶居民門窗損壞,若小區(qū)所有居民的門窗均由李師傅和張師傅兩人進行維修,李師傅每天早上在7:00到8:00之間的任意時刻來到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時刻來到小區(qū),求連續(xù)3天內(nèi),李師傅比張師傅早到小區(qū)的天數(shù)的數(shù)學期望.

附:臨界值表

參考公式: .

查看答案和解析>>

同步練習冊答案