【題目】為推進長三角一體化戰(zhàn)略,長三角區(qū)域內5個大型企業(yè)舉辦了一次協(xié)作論壇.在這5個企業(yè)董事長A,B,C,D,E集體會晤之前,除B與E,D與E不單獨會晤外,其他企業(yè)董事長兩兩之間都要單獨會晤.現(xiàn)安排他們在正式會晤的前兩天的上午、下午單獨會晤(每人每個半天最多只進行一次會晤),那么安排他們單獨會晤的不同方法共有( )
A.48種B.36種C.24種D.8種
科目:高中數學 來源: 題型:
【題目】已知衡量病毒傳播能力的最重要指標叫做傳播指數RO.它指的是,在自然情況下(沒有外力介入,同時所有人都沒有免疫力),一個感染到某種傳染病的人,會把疾病傳染給多少人的平均數.它的簡單計算公式是:確認病例增長率系列間隔,其中系列間隔是指在一個傳播鏈中,兩例連續(xù)病例的間隔時間(單位:天).根據統(tǒng)計,確認病例的平均增長率為,兩例連續(xù)病例的間隔時間的平均數為天,根據以上RO數據計算,若甲得這種傳染病,則輪傳播后由甲引起的得病的總人數約為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數和中位數;
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應抽取多少戶?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某社區(qū)消費者協(xié)會為了解本社區(qū)居民網購消費情況,隨機抽取了100位居民作為樣本,就最近一年來網購消費金額(單位:千元),網購次數和支付方式等進行了問卷調査.經統(tǒng)計這100位居民的網購消費金額均在區(qū)間內,按,,,,,分成6組,其頻率分布直方圖如圖所示.
(1)估計該社區(qū)居民最近一年來網購消費金額的中位數;
(2)將網購消費金額在20千元以上者稱為“網購迷”,補全下面的列聯(lián)表,并判斷有多大把握認為“網購迷與性別有關系”;
男 | 女 | 合計 | |
網購迷 | 20 | ||
非網購迷 | 45 | ||
合計 | 100 |
(3)調査顯示,甲、乙兩人每次網購采用的支付方式相互獨立,兩人網購時間與次數也互不. 影響.統(tǒng)計最近一年來兩人網購的總次數與支付方式,所得數據如下表所示:
網購總次數 | 支付寶支付次數 | 銀行卡支付次數 | 微信支付次數 | |
甲 | 80 | 40 | 16 | 24 |
乙 | 90 | 60 | 18 | 12 |
將頻率視為概率,若甲、乙兩人在下周內各自網購2次,記兩人采用支付寶支付的次數之和為,求的數學期望.
附:觀測值公式:
臨界值表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=axex,g(x)=x2+2x+b,若曲線y=f(x)與曲線y=g(x)都過點P(1,c).且在點P處有相同的切線l.
(Ⅰ)求切線l的方程;
(Ⅱ)若關于x的不等式k[ef(x)]≥g(x)對任意x∈[﹣1,+∞)恒成立,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若存在a>0,使得函數f(x)=6a2lnx+4ax與g(x)=x2﹣b在這兩函數圖象的公共點處的切線相同,則b的最大值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦距為2,過右焦點和短軸一個端點的直線的斜率為,為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設斜率為的直線與橢圓相交于兩點,記面積的最大值為,證明:
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com