19.在平面直角坐標系xOy中,雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的一條漸近線與直線y=2x+1平行,則實數(shù)a的值是1.

分析 求出雙曲線的漸近線方程,由兩直線平行的條件:斜率相等,解方程可得a的值.

解答 解:雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1(a>0)的漸近線方程為y=±$\frac{2}{a}$x,
由雙曲線的一條漸近線與直線y=2x+1平行,
可得$\frac{2}{a}$=2,
解得a=1.
故答案為:1.

點評 本題考查雙曲線的漸近線方程和兩直線平行的條件:斜率相等,考查運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.金老師為投資理財,考慮了兩種投資計劃,
計劃A:從2015年初開始購買投資產(chǎn)品,每個月1號投資,第一次投次1500元錢,用于購買“余額寶”,“余額寶”的月收益率為0.5%(類似于銀行存款,月底結(jié)算利息);
計劃B:從2015年初開始購買投資產(chǎn)品,每個月1號投資,第一次投次1000元錢,以后每一次比上一次多投資200元,用于購買同一只股票,到2016年底(2016年12月31日),這只股票收益50%的概率為$\frac{1}{4}$,虧損$\frac{1}{12}$的概率為$\frac{3}{4}$.若兩計劃的收益均不考慮手續(xù)費.
(1)求計劃B到2016年底的收益的期望值;
(2)根據(jù)2016年年底的收益,從收益率的角度出發(fā),試問你將選擇何種投資?
(注:收益率=$\frac{收益}{投資總額}$,參考數(shù)據(jù)1.00524≈1.13,$\frac{7}{80}$≈0.0875,$\frac{11}{176}$≈0.0625)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知α∈(0,$\frac{π}{4}$),0<m<1,a=logm$\frac{1}{sinα}$,b=msinα,c=mcosα,則( 。
A.c>a>bB.b>a>cC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設集合A={x∈Q|x>-1},則( 。
A.3∉AB.{$\sqrt{2}$}⊆AC.$\sqrt{2}$∈AD.$\sqrt{2}$∉A

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.下列說法中不正確的是( 。
A.棱柱的各個側(cè)面都是平行四邊形B.棱錐的側(cè)面都是三角形
C.棱臺的所有側(cè)棱都相等D.圓柱的任意兩條母線互相平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知a($\sqrt{3}$tanB-1)=$\frac{bcosA}{cosB}+\frac{ccosA}{cosC}$.
(1)求角C的大;
(2)若三角形的周長為20,面積為10$\sqrt{3}$,且a>b,求三角形三邊長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖所示的陰影部分是由x軸,直線x=1及曲線y=ex-1圍成,現(xiàn)向矩形區(qū)域OABC內(nèi)隨機投擲一點,則該點落在陰影部分的概率是( 。
A.$\frac{1}{e}$B.$\frac{1}{e-1}$C.$1-\frac{1}{e}$D.$\frac{e-2}{e-1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知全集U={1,2,3,4,5,6},M={2,4,6},則∁UM=( 。
A.{2,4,6}B.{4,6}C.{1,3,5}D.{1,2,3,4,5,6}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設a=(lg2)2+(lg5)2+lg4lg5+2log510+log50.25,b=(log2125+log85)•log52,試比較a與b的大。

查看答案和解析>>

同步練習冊答案