給定橢圓,稱(chēng)圓心在坐標(biāo)原點(diǎn)x∈[2,6],半徑為的圓是橢圓m的“伴隨圓”. 若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到F2距離為
(Ⅰ)求橢圓C及其“伴隨圓”的方程;
(Ⅱ)若過(guò)點(diǎn)P(0,m)(m<0)的直線l與橢圓C只有一個(gè)公共點(diǎn),且l截橢圓C的“伴隨圓”所得的弦長(zhǎng)為,求m的值;
(Ⅲ)過(guò)橢圓C“伴橢圓”上一動(dòng)點(diǎn)Q作直線l1,l2,使得l1,l2與橢圓C都只有一個(gè)公共點(diǎn),試判斷直線l1,l2的斜率之積是否為定值,并說(shuō)明理由.
【答案】分析:(Ⅰ)直接根據(jù)條件求出,半焦距,得到橢圓方程,進(jìn)而根據(jù)定義求出其“伴隨圓”的方程;
(Ⅱ)先設(shè)出直線方程,與橢圓方程聯(lián)立,根據(jù)直線l與橢圓C只有一個(gè)公共點(diǎn)得到k,m之間的關(guān)系;再結(jié)合l截橢圓C的“伴隨圓”所得的弦長(zhǎng)為,即可求m的值;
(Ⅲ)設(shè)出過(guò)點(diǎn)Q(x,y),與橢圓只有一個(gè)公共點(diǎn)的直線方程,聯(lián)立直線方程與橢圓方程根據(jù)交點(diǎn)只有一個(gè),得到關(guān)于k與點(diǎn)Q坐標(biāo)之間的等式,最后再結(jié)合Q在伴橢圓上即可的出結(jié)論.
解答:解:(Ⅰ)由題意得:,半焦距
則b=1橢圓C方程為
“伴隨圓”方程為x2+y2=4…(4分)
(Ⅱ)則設(shè)過(guò)點(diǎn)P且與橢圓有一個(gè)交點(diǎn)的直線l為:y=kx+m,
整理得(1+3k2)x2+6kmx+(3m2-3)=0
所以△=(6km)2-4(1+3k2)(3m2-3)=0,解3k2+1=m2①…(6分)
又因?yàn)橹本l截橢圓C的“伴隨圓”所得的弦長(zhǎng)為
則有化簡(jiǎn)得m2=2(k2+1)②…(8分)
聯(lián)立①②解得,k2=1,m2=4,
所以k=±1,m=-2(∵m<0),則P(0,-2)…(10分)
(Ⅲ)當(dāng)l1,l2都有斜率時(shí),設(shè)點(diǎn)Q(x,y),其中x2+y2=4,
設(shè)經(jīng)過(guò)點(diǎn)Q(x,y),與橢圓只有一個(gè)公共點(diǎn)的直線為y=k(x-x)+y,
,消去y得到x2+3[kx+(y-kx)]2-3=0…(12分)
即(1+3k2)x2+6k(y-kx)x+3(y-kx2-3=0,
△=[6k(y-kx)]2-4•(1+3k2)[3(y-kx2-3]=0,
經(jīng)過(guò)化簡(jiǎn)得到:(3-x2)k2+2xyk+1-y2=0,…(14分)
因?yàn)閤2+y2=4,所以有(3-x2)k2+2xyk+(x2-3)=0,
設(shè)l1,l2的斜率分別為k1,k2,
因?yàn)閘1,l2與橢圓都只有一個(gè)公共點(diǎn),
所以k1,k2滿足方程(3-x2)k2+2xyk+(x2-3)=0,
因而k1•k2=-1,即直線l1,l2的斜率之積是為定值-1…(16分)
點(diǎn)評(píng):本題主要考查在新定義下圓與圓錐曲線的綜合問(wèn)題.解決新定義的題目,一定要理解定義,避免出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆湖北省黃岡中學(xué)高三5月模擬考試文科數(shù)學(xué) 題型:解答題

(本小題滿分14分)
給定橢圓,稱(chēng)圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到距離為
(Ⅰ)求橢圓C及其“伴隨圓”的方程;
(Ⅱ)若過(guò)點(diǎn)的直線與橢圓C只有一個(gè)公共點(diǎn),且截橢圓C的“伴隨圓”所得的弦長(zhǎng)為,求的值;
(Ⅲ)過(guò)橢圓C“伴橢圓”上一動(dòng)點(diǎn)Q作直線,使得與橢圓C都只有一個(gè)公共點(diǎn),試判斷直線的斜率之積是否為定值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆湖北省黃岡中學(xué)高三5月模擬考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分13分)
給定橢圓,稱(chēng)圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到距離為
(Ⅰ)求橢圓及其“伴隨圓”的方程;
(Ⅱ)若過(guò)點(diǎn)的直線與橢圓C只有一個(gè)公共點(diǎn),且截橢圓C的“伴隨圓”所得的弦長(zhǎng)為,求的值;
(Ⅲ)過(guò)橢圓C“伴橢圓”上一動(dòng)點(diǎn)Q作直線,使得與橢圓C都只有一個(gè)公共點(diǎn),試判斷直線的斜率之積是否為定值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年上海市徐匯區(qū)高三上學(xué)期期末考試(一模)理科數(shù)學(xué)試卷(解析版) 題型:解答題

給定橢圓,稱(chēng)圓心在坐標(biāo)原點(diǎn)O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個(gè)焦點(diǎn)分別是.

(1)若橢圓C上一動(dòng)點(diǎn)滿足,求橢圓C及其“伴隨圓”的方程;

(2)在(1)的條件下,過(guò)點(diǎn)作直線l與橢圓C只有一個(gè)交點(diǎn),且截橢圓C的“伴隨圓”所得弦長(zhǎng)為,求P點(diǎn)的坐標(biāo);

(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點(diǎn)到過(guò)兩點(diǎn)的直線的最短距離.若存在,求出a,b的值;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年上海市徐匯區(qū)高三上學(xué)期期末考試(一模)文科數(shù)學(xué)試卷(解析版) 題型:解答題

給定橢圓,稱(chēng)圓心在坐標(biāo)原點(diǎn)O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個(gè)焦點(diǎn)分別是.

(1)若橢圓C上一動(dòng)點(diǎn)滿足,求橢圓C及其“伴隨圓”的方程;

(2)在(1)的條件下,過(guò)點(diǎn)作直線l與橢圓C只有一個(gè)交點(diǎn),且截橢圓C的“伴隨圓”所得弦長(zhǎng)為,求P點(diǎn)的坐標(biāo);

(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點(diǎn)到過(guò)兩點(diǎn)的直線的最短距離.若存在,求出a,b的值;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖北省高三5月模擬考試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分13分)

給定橢圓,稱(chēng)圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到距離為

(Ⅰ)求橢圓及其“伴隨圓”的方程;

(Ⅱ)若過(guò)點(diǎn)的直線與橢圓C只有一個(gè)公共點(diǎn),且截橢圓C的“伴隨圓”所得的弦長(zhǎng)為,求的值;

(Ⅲ)過(guò)橢圓C“伴橢圓”上一動(dòng)點(diǎn)Q作直線,使得與橢圓C都只有一個(gè)公共點(diǎn),試判斷直線的斜率之積是否為定值,并說(shuō)明理由.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案