【題目】某品牌汽車的店,對最近100份分期付款購車情況進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)情況如下表所示.已知分9期付款的頻率為0.4;該店經(jīng)銷一輛該品牌汽車,若顧客分3期付款,其利潤為1萬元;分6期或9期付款,其利潤為2萬元;分12期付款,其利潤為3萬元.
付款方式 | 分3期 | 分6期 | 分9期 | 分12期 |
頻數(shù) | 20 | 20 |
(1)若以上表計(jì)算出的頻率近似替代概率,從該店采用分期付款購車的顧客(數(shù)量較大)中隨機(jī)抽取3為顧客,求事件:“至多有1位采用分6期付款“的概率;
(2)按分層抽樣方式從這100為顧客中抽取5人,再從抽取的5人中隨機(jī)抽取3人,記該店在這3人身上賺取的總利潤為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
【答案】(1);
(2)所以隨機(jī)變量的分布列為
5 | 6 | 7 | |
0.3 | 0.4 | 0.3 |
∴(萬元).
【解析】【試題分析】(1)依據(jù)題設(shè)運(yùn)用二項(xiàng)分布公式求解;(2)借助題設(shè)求出隨機(jī)變量的分布列,再依據(jù)數(shù)學(xué)期望公式分析求解:
(1)由題意, , ,
則表中分6期付款購車的顧客頻率,
所以.
(2)按分層抽樣的方式抽取的5人中,有1位分3期付款,有3位分6期或9期付款,有1位分12期付款.
隨機(jī)變量可能取的值是5,6,7,
則, , ,
所以隨機(jī)變量的分布列為
5 | 6 | 7 | |
0.3 | 0.4 | 0.3 |
∴(萬元)即為所求.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某手機(jī)廠商推出一次智能手機(jī),現(xiàn)對500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對手機(jī)進(jìn)行打分,打分的頻數(shù)分布表如下:
(1)完成下列頻率分布直方圖,并比較女性用戶和男性用戶評分的方差大。ú挥(jì)算具體值,給出結(jié)論即可);
(2)根據(jù)評分的不同,運(yùn)用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意取2名用戶,求2名用戶評分小于90分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一批產(chǎn)品需要進(jìn)行質(zhì)量檢驗(yàn),檢驗(yàn)方案是:先從這批產(chǎn)品中任取4件作檢驗(yàn),這4件產(chǎn)品中優(yōu)質(zhì)品的件數(shù)記為n.如果n=3,再從這批產(chǎn)品中任取4件作檢驗(yàn),若都為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗(yàn);如果n=4,再從這批產(chǎn)品中任取1件作檢驗(yàn),若為優(yōu)質(zhì)品,則這批產(chǎn)品通過檢驗(yàn);其他情況下,這批產(chǎn)品都不能通過檢驗(yàn).
假設(shè)這批產(chǎn)品的優(yōu)質(zhì)品率為50%,即取出的產(chǎn)品是優(yōu)質(zhì)品的概率都為,且各件產(chǎn)品是否為優(yōu)質(zhì)品相互獨(dú)立.
(1)求這批產(chǎn)品通過檢驗(yàn)的概率;
(2)已知每件產(chǎn)品檢驗(yàn)費(fèi)用為100元,凡抽取的每件產(chǎn)品都需要檢驗(yàn),對這批產(chǎn)品作質(zhì)量檢驗(yàn)所需的費(fèi)用記為X(單位:元),求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示2×2方格,在每一個(gè)方格中填入一個(gè)數(shù)字,數(shù)字可以是1、2、3、4中的任何一個(gè),允許重復(fù).若填入A方格的數(shù)字大于B方格的數(shù)字,則不同的填法共有( )
A. 192種 B. 128種 C. 96種 D. 12種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(1)求函數(shù)在上的單調(diào)區(qū)間,并給以證明;
(2)設(shè)關(guān)于的方程的兩根為,試問是否存在實(shí)數(shù),使得不等式對任意的及恒成立?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,與直角坐標(biāo)系取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)化曲線的方程為普通方程,并說明它們分別表示什么曲線;
(2)設(shè)曲線與軸的一個(gè)交點(diǎn)的坐標(biāo)為,經(jīng)過點(diǎn)作斜率為1的直線, 交曲線于兩點(diǎn),求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙同學(xué)參加學(xué)!耙徽镜降住标J關(guān)活動,活動規(guī)則:①依次闖關(guān)過程中,若闖關(guān)成功則繼續(xù)答題;若沒通關(guān)則被淘汰;②每人最多闖3關(guān);③闖第一關(guān)得10分,闖第二關(guān)得20分,闖第三關(guān)得30分,一關(guān)都沒過則沒有得分.已知甲每次闖關(guān)成功的概率為,乙每次闖關(guān)成功的概率為.
(Ⅰ)設(shè)乙的得分總數(shù)為,求得分布列和數(shù)學(xué)期望;
(Ⅱ)求甲恰好比乙多30分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在處的切線方程為,求和的值;
(Ⅱ)討論方程的解的個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)是否存在實(shí)數(shù),使得函數(shù)在上的最小值為?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com