【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù));以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(Ⅰ)求曲線的普通方程與曲線的直角坐標方程;

(Ⅱ)若把曲線各點的橫坐標伸長到原來的倍,縱坐標變?yōu)樵瓉淼?/span>,得到曲線,求曲線的方程;

(Ⅲ)設為曲線上的動點,求點到曲線上點的距離的最小值,并求此時點的坐標.

【答案】(Ⅰ),.

(Ⅱ).

(Ⅲ) ,此時 的坐標為.

【解析】分析:(Ⅰ)直接消參得到直角坐標方程,利用極坐標公式把極坐標化成直角坐標方程.( Ⅱ)利用伸縮變換公式求曲線的方程.( Ⅲ) 設橢圓上的點,再求d的表達式,最后利用三角函數(shù)的圖像性質(zhì)求點到曲線上點的距離的最小值,并求此時點的坐標.

詳解:(Ⅰ)由曲線)得為參數(shù)),

,

為曲線的普通方程.

由曲線 ,得,

即為的直角坐標方程.

(Ⅱ)依題意,設是曲線上任意一點,對應曲線上的點為,

則有, ∴ .

: ,∴.

即所求曲線的方程為.

(Ⅲ)易知,橢圓與直線無公共點,設橢圓上的點,

從而點到直線的距離為

∴當時,,

此時,∴點的坐標為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某軍工企業(yè)生產(chǎn)一種精密電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù):其中x是儀器的月產(chǎn)量.

(1)將利潤表示為月產(chǎn)量的函數(shù);

(2)當月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤是多少元?(總收益=總成本+利潤.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列說法,正確的有__________.

①與共線單位向量的坐標是;

②集合與集合是相等集合;

③函數(shù)的圖象與的圖象恰有3個公共點;

④函數(shù)的圖象是由函數(shù)的圖象水平向右平移一個單位后將所得圖象在軸右側(cè)部分沿軸翻折到軸左側(cè)替代軸左側(cè)部分圖象,并保留右側(cè)部分而得到.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)=Asin(A>0,>0,<)在處取得最大值2,其圖象與x軸的相鄰兩個交點的距離為。

(1)求的解析式;

(2)求函數(shù) 的值域。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于兩條平行直線和圓的位置關系定義如下:若兩直線中至少有一條與圓相切,則稱該位置關系為“平行相切”;若兩直線都與圓相離,則稱該位置關系為“平行相離”;否則稱為“平行相交”.已知直線l1ax3y60l22x(a1)y60與圓Cx2y22xb21(b>0)的位置關系是“平行相交”,則實數(shù)b的取值范圍為 (   )

A. (, ) B. (0, )

C. (0 ) D. (, )(,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C的圓心C在直線上.

若圓Cy軸的負半軸相切,且該圓截x軸所得的弦長為,求圓C的標準方程;

已知點,圓C的半徑為3,且圓心C在第一象限,若圓C上存在點M,使為坐標原點,求圓心C的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將5名報名參加運動會的同學分別安排到跳繩、接力,投籃三項比賽中(假設這些比賽都不設人數(shù)上限),每人只參加一項,則共有種不同的方案;若每項比賽至少要安排一人時,則共有種不同的方案,其中的值為( )

A. 543 B. 425 C. 393 D. 275

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=ln(x+1)﹣ (a>1).
(1)討論f(x)的單調(diào)性;
(2)設a1=1,an+1=ln(an+1),證明: <an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列有關線性回歸分析的四個命題:

①線性回歸直線必過樣本數(shù)據(jù)的中心點();

②回歸直線就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線;

③當相關性系數(shù)時,兩個變量正相關;

④如果兩個變量的相關性越強,則相關性系數(shù)就越接近于

其中真命題的個數(shù)為( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

同步練習冊答案