3.若圓錐的側(cè)面展開圖是半徑為2,中心角為$\frac{5π}{3}$的扇形,則由它的兩條母線所確定的截面面積的最大值為2.

分析 求出圓錐的母線和底面半徑,設(shè)截面在圓錐底面的軌跡AB=a,(0<a≤2r),用a表示出截面的面積,利用基本不等式求出截面的面積最大值.

解答 解:圓錐的母線長l=2,設(shè)圓錐的底面半徑為r,
則2πr=2×$\frac{5π}{3}$=$\frac{10π}{3}$.∴r=$\frac{5}{3}$.
設(shè)截面在圓錐底面的軌跡AB=a(0<a≤$\frac{10}{3}$).
則截面等腰三角形的高h=$\sqrt{4-\frac{{a}^{2}}{4}}$.
∴截面面積S=$\frac{1}{2}ah$=$\sqrt{\frac{{a}^{2}}{4}(4-\frac{{a}^{2}}{2})}$≤$\frac{4}{2}$=2,
當(dāng)且僅當(dāng)a=2$\sqrt{2}$時取等號.
故答案為2.

點評 本題考查了圓錐的結(jié)構(gòu)特征,基本不等式的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在sinB=$\frac{{\sqrt{3}}}{2}$中,B=60°,AC=$\sqrt{3}$,則AB+2BC的最大值為2$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,f(2)=0,對于滿足f(k-1)>0的任意k值,則使得函數(shù)g(x)=|x-2|-kx+1有兩個不相同的零點的概率為( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x|ax-1=0},B={x|1<log2x≤2,x∈N},且A∩B=A,則a的所有可能值組成的集合是( 。
A.B.{$\frac{1}{3}$}C.{$\frac{1}{3}$,$\frac{1}{4}$}D.{$\frac{1}{3}$,$\frac{1}{4}$,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,則2$\overrightarrow{a}$+$\overrightarrow$在$\overrightarrow$方向上的投影為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若集合P={2,3,4,5,6},Q={3,5,7},若M=P∩Q,則M的子集個數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.不等式-3x2+2x+8>0的解集為(-$\frac{4}{3}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某次數(shù)學(xué)測驗中的成績,五名男生的成績分別為86,94,88,92,90,五名女生的成績分別為88,93,93,88,93.下列說法一定正確的是(  )
A.這種抽樣方法是一種分層抽樣
B.這種抽樣方法是一種系統(tǒng)抽樣
C.這五名男生成績的方差大于這五名女生成績的方差
D.該班級男生成績的平均數(shù)小于該班女生成績的平均數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若實數(shù)x,y滿足x2+y2-2x-2y+1=0,則$\frac{y-4}{x-2}$的取值范圍為( 。
A.[0,$\frac{4}{3}$]B.[$\frac{4}{3}$,+∞)C.(-$∞,\frac{4}{3}$]D.[-$\frac{4}{3}$,0)

查看答案和解析>>

同步練習(xí)冊答案