【題目】設(shè)正有理數(shù)a1 的一個近似值,令a2=1+ ,求證:
(1) 介于a1與a2之間;
(2)a2比a1更接近于

【答案】
(1)證明:a2 =1+ =

∵若a1 ,∴a1 >0,而1﹣ <0,

∴a2

∵若a1 ,∴a1 <0,而1﹣ <0,

∴a2

介于a1與a2之間;


(2)證明:|a2 |﹣|a1 |= ﹣|a1 |=|a1 ,

∵a1>0, ﹣2<0,|a1 |>0,

∴|a2 |﹣|a1 |<0

∴|a2 |<|a1 |

∴a2比a1更接近于


【解析】(1)利用作差法,再因式分解,確定其符號,即可得到結(jié)論,(2)利用作差法,判斷即可得到a2比a1更接近于 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p: ,命題q:x∈R,x2﹣2ax+2﹣a=0,若命題“p∧q”是真命題,則實數(shù)a的取值范圍是(
A.(﹣∞,﹣2]∪{1}
B.(﹣∞,﹣2]∪[1,2]
C.[1,+∞)
D.[﹣2,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.

(1)證明:D1E⊥A1D;
(2)當(dāng)E為AB的中點時,求點E到面ACD1的距離;
(3)AE等于何值時,二面角D1﹣EC﹣D的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】非空集合G關(guān)于運算⊕滿足:
⑴對任意a,b∈G,都有a+b∈G;
⑵存在e∈G使得對于一切a∈G都有a⊕e=e⊕a=a,
則稱G是關(guān)于運算⊕的融洽集,
現(xiàn)有下列集合與運算:
①G是非負(fù)整數(shù)集,⊕:實數(shù)的加法;
②G是偶數(shù)集,⊕:實數(shù)的乘法;
③G是所有二次三項式構(gòu)成的集合,⊕:多項式的乘法;
④G={x|x=a+b ,a,b∈Q},⊕:實數(shù)的乘法;
其中屬于融洽集的是(請?zhí)顚懢幪枺?/span>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={1,2,3},B={x|x2﹣(a+1)x+a=0,x∈R},若A∪B=A,求實數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 的左、右焦點分別為F1、F2 , P為C的右支上一點,且|PF2|=|F1F2|,則 等于(
A.24
B.48
C.50
D.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在邊長是2的正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為AB,A1C的中點.應(yīng)用空間向量方法求解下列問題.

(1)求EF的長
(2)證明:EF∥平面AA1D1D;
(3)證明:EF⊥平面A1CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人都準(zhǔn)備于下午12:00﹣13:00之間到某車站乘某路公交車外出,設(shè)在12:00﹣13:00之間有四班該路公交車開出,已知開車時間分別為12:20;12:30;12:40;13:00,分別求他們在下述情況下坐同一班車的概率.
(1)他們各自選擇乘坐每一班車是等可能的;
(2)他們各自到達(dá)車站的時刻是等可能的(有車就乘).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)m,n∈R,定義在區(qū)間[m,n]上的函數(shù)f(x)=log2(4﹣|x|)的值域是[0,2],若關(guān)于t的方程( |t|+m+1=0(t∈R)有實數(shù)解,則m+n的取值范圍是

查看答案和解析>>

同步練習(xí)冊答案