【題目】如圖,在四棱錐P一ABCD中,平面PAB⊥平面ABCD, AB⊥BC, AD//BC, AD=3,PA=BC=2AB=2,
PB=.
(Ⅰ)求證:BC⊥PB;
(Ⅱ)求二面角P一CD一A的余弦值;
(Ⅲ)若點E在棱PA上,且BE//平面PCD,求線段BE的長.
【答案】(1)見解析;(2) ;(3) .
【解析】試題分析:(Ⅰ)根據(jù)面面垂直的性質(zhì)定理,證得⊥平面,進而證得所以⊥;
(Ⅱ)建立空間直角坐標系,得到向量的坐標,再得到平面的一個法向量為,利用向量的夾角公式,即可得到二面角的余弦值;
(Ⅲ)由點在棱,所以,得到所以, ,
再根據(jù)與平面的法向量的數(shù)量積等于零,即可求解的值.
試題解析:
(Ⅰ)證明:因為平面⊥平面,
且平面平面,
因為⊥,且平面
所以⊥平面.
因為平面,
所以⊥.
(Ⅱ)解:在△中,因為, , ,
所以,所以⊥.
所以,建立空間直角坐標系,如圖所示.
所以, , ,
, ,
, .
易知平面的一個法向量為.
設(shè)平面的一個法向量為,
則, 即,
令,則.
設(shè)二面角的平面角為,可知為銳角,
則,
即二面角的余弦值為.
(Ⅲ)解:因為點在棱,所以, .
因為,
所以, .
又因為平面, 為平面的一個法向量,
所以,即,所以.
所以,所以.
科目:高中數(shù)學 來源: 題型:
【題目】在直角梯形中,,,,如圖1.把沿翻折,使得平面平面,如圖2.
(Ⅰ)求證:;
(Ⅱ)若點為線段中點,求點到平面的距離;
(Ⅲ)在線段上是否存在點,使得與平面所成角為?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司對營銷人員有如下規(guī)定:
①年銷售額 (萬元)在8萬元以下,沒有獎金;
②年銷售額 (萬元), 時,獎金為萬元,且, ,且年銷售額越大,獎金越多;
③年銷售額超過64萬元,按年銷售額的10%發(fā)獎金.
(1)求獎金y關(guān)于x的函數(shù)解析式;
(2)若某營銷人員爭取獎金 (萬元),則年銷售額 (萬元)在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1)當時,求曲線在處的切線方程;
(2)當時,判斷 在上的單調(diào)性,并說明理由;
(3)當時,求證: ,都有
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若,求曲線在點處的切線方程;
(Ⅱ)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點在橢圓: 上, 是橢圓的一個焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)橢圓C上不與點重合的兩點, 關(guān)于原點O對稱,直線, 分別交軸于, 兩點.求證:以為直徑的圓被直線截得的弦長是定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】濟南新舊動能轉(zhuǎn)換先行區(qū),承載著濟南從“大明湖時代”邁向“黃河時代”的夢想,肩負著山東省新舊動能轉(zhuǎn)換先行先試的重任,是全國新舊動能轉(zhuǎn)換的先行區(qū).先行區(qū)將以“結(jié)構(gòu)優(yōu)化質(zhì)量提升”為目標,通過開放平臺匯聚創(chuàng)新要素,堅持綠色循環(huán)保障持續(xù)發(fā)展,建設(shè)現(xiàn)代綠色智慧新城.2019年某智能機器人制造企業(yè)有意落戶先行區(qū),對市場進行了可行性分析,如果全年固定成本共需2000(萬元),每年生產(chǎn)機器人(百個),需另投人成本(萬元),且,由市場調(diào)研知,每個機器人售價6萬元,且全年生產(chǎn)的機器人當年能全部銷售完.
(1)求年利潤(萬元)關(guān)于年產(chǎn)量(百個)的函數(shù)關(guān)系式;(利潤=銷售額-成本)
(2)該企業(yè)決定:當企業(yè)年最大利潤超過2000(萬元)時,才選擇落戶新舊動能轉(zhuǎn)換先行區(qū).請問該企業(yè)能否落戶先行區(qū),并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù).
(1)若關(guān)于的方程的解集中恰有一個元素,求的值;
(2)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列: 滿足: .記的前項和為,并規(guī)定.定義集合, , .
(Ⅰ)對數(shù)列: , , , , ,求集合;
(Ⅱ)若集合, ,證明: ;
(Ⅲ)給定正整數(shù).對所有滿足的數(shù)列,求集合的元素個數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com