(2008•河西區(qū)三模)已知函數(shù)f(x)=3
x-m(0≤x≤4,m為常數(shù))的圖象過點(diǎn)(1,
),f(x)的反函數(shù)f
-1(x),則F(x)=[f
-1(x)]
2-f
-1(x
2)的值域?yàn)椋ā 。?/div>
分析:由函數(shù)f(x)=3
x-m(0≤x≤4,m為常數(shù))的圖象過點(diǎn)(1,
)求出m的值,求出函數(shù)的反函數(shù),代入
F(x)=[f
-1(x)]
2-f
-1(x
2)整理后得答案.
解答:解:由f(x)=3
x-m(0≤x≤4,m為常數(shù))的圖象過點(diǎn)(1,
),
得
31-m=,解得m=2.
∴f(x)=3
x-2(0≤x≤4).
由y=f(x)=3
x-2,得x=log
3y+2,
∴f
-1(x)=log
3x+2(
≤x≤9).
則F(x)=[f
-1(x)]
2-f
-1(x
2)
=
(log3x+2)2-log3x2-2=
(log3x+1)2+1(
≤x≤3).
∴F(x)=[f
-1(x)]
2-f
-1(x
2)的值域?yàn)閇1,5].
故選B.
點(diǎn)評:本題考查了函數(shù)的反函數(shù)的求法,考查了函數(shù)的值域的求法,解答此題的關(guān)鍵在于注意反函數(shù)的定義域及最后和函數(shù)的定義域,是中檔題也是易錯(cuò)題.