如圖,四邊形是☉的內(nèi)接四邊形,不經(jīng)過(guò)點(diǎn),平分,經(jīng)過(guò)點(diǎn)的直線分別交的延長(zhǎng)線于點(diǎn),且,證明:

(1);
(2)是☉的切線.

(1)借助于兩個(gè)三角形中兩個(gè)角對(duì)應(yīng)相等來(lái)加以證明。
(2)利用切割線定理來(lái)得到證明

解析試題分析:(1)根據(jù)題意,由于四邊形是☉的內(nèi)接四邊形,不經(jīng)過(guò)點(diǎn),平分,經(jīng)過(guò)點(diǎn)的直線分別交的延長(zhǎng)線于點(diǎn),且,根據(jù)同弧所對(duì)的圓周角相等,以及內(nèi)角平分線的性質(zhì)可知,那么對(duì)于三角形ABC,與三角形CDF中有兩組角對(duì)應(yīng)相等,B= D,A= C,得到;
(2)根據(jù)相似的結(jié)論可知,同時(shí),那么可知,,因此可知是☉的切線.
考點(diǎn):相似三角形,切線的證明
點(diǎn)評(píng):主要是考查了圓的內(nèi)部的性質(zhì)以及三角形相似的證明,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)選修4—1:幾何證明選講  
如圖,直線為圓的切線,切點(diǎn)為,點(diǎn)在圓上,的角平分線交圓于點(diǎn)垂直交圓于點(diǎn)。

(Ⅰ)證明:;
(Ⅱ)設(shè)圓的半徑為,,延長(zhǎng)于點(diǎn),求外接圓的半徑。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,的切線,過(guò)圓心, 的直徑,相交于兩點(diǎn),連結(jié). (1) 求證:;
(2) 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖△為直角三角形,,以為直徑的圓交于點(diǎn),點(diǎn)邊的中點(diǎn),連交圓于點(diǎn)

(Ⅰ)求證:、、四點(diǎn)共圓;
(Ⅱ)設(shè),,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,AB是⊙O的直徑 ,AC是弦 ,∠BAC的平分線AD交⊙O于點(diǎn)D,DE⊥AC,交AC的延長(zhǎng)線于點(diǎn)E.OE交AD于點(diǎn)F.

(Ⅰ)求證:DE是⊙O的切線;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直角三角形的頂點(diǎn)坐標(biāo),直角頂點(diǎn),頂點(diǎn)軸上,點(diǎn)為線段的中點(diǎn)

(Ⅰ)求邊所在直線方程;
(Ⅱ)為直角三角形外接圓的圓心,求圓的方程;
(Ⅲ)若動(dòng)圓過(guò)點(diǎn)且與圓內(nèi)切,求動(dòng)圓的圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

切線與圓切于點(diǎn),圓內(nèi)有一點(diǎn)滿足,的平分線交圓于,,延長(zhǎng)交圓于,延長(zhǎng)交圓于,連接

(Ⅰ)證明://
(Ⅱ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在邊長(zhǎng)為1的等邊△ABC中,D、E分別為邊ABAC上的點(diǎn),若A關(guān)于直線DE的對(duì)稱點(diǎn)A1恰好在線段BC上,

(1)①設(shè)A1Bx,用x表示AD;②設(shè)∠A1ABθ∈[0º,60º],用θ表示AD
(2)求AD長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)選修41:幾何證明選講
如圖,相交于A、B兩點(diǎn),AB是的直徑,過(guò)A點(diǎn)作的切線交于點(diǎn)E,并與BO1的延長(zhǎng)線交于點(diǎn)P,PB分別與、交于C,D兩點(diǎn).
求證:(1)PA·PD=PE·PC; (2)AD=AE.

查看答案和解析>>

同步練習(xí)冊(cè)答案