如圖(1)所示,ABCD是正方形,E是AB的中點(diǎn),如將△DAE和△CBE分別沿虛線DE和CE折起,使AE與BE重合,記A與B重合后的點(diǎn)是P(圖(2)),則平面PCD與平面ECD所成的二面角的度數(shù)是________.

答案:
解析:

  答案:30°

  解析:如下圖作EF⊥CD于F,

  


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖1所示,在邊長(zhǎng)為12的正方形AA′A′1A1中,BB1∥CC1∥AA1,且AB=3,BC=4,AA′1分別交BB1,CC1于點(diǎn)P、Q,將該正方形沿BB1、CC1折疊,使得A′A′1與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1,請(qǐng)?jiān)趫D2中解決下列問(wèn)題:
(1)求證:AB⊥PQ;
(2)在底邊AC上有一點(diǎn)M,滿足AM;MC=3:4,求證:BM∥平面APQ.
(3)求直線BC與平面APQ所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖1所示,圓O的直徑AB=6,C為圓周上一點(diǎn),BC=3.過(guò)C作圓的切線l,過(guò)A作l的垂線AD,AD與直線l、圓O分別交于點(diǎn)D、E.
(1)求∠DAC的大小及線段AE的長(zhǎng);
(2)如圖2所示,將△ACD沿AC折起,點(diǎn)D折至點(diǎn)P處,且使得△ACP所在平面與圓O所在平面垂直,連接BP,求二面角P-AB-C大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖1所示,在邊長(zhǎng)為12的正方形AA′A1′A1中,點(diǎn)B,C在線段AA′上,且AB=3,BC=4,作BB1∥AA1,分別交A1A1′、AA1′于點(diǎn)B1、P,作CC1∥AA1,分別交A1A1′、AA1′于點(diǎn)C1、Q,將該正方形沿BB1、CC1折疊,使得A′A1′與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1
(1)在三棱柱ABC-A1B1C1中,求證:AB⊥平面BCC1B1;
(2)求平面APQ將三棱柱ABC-A1B1C1分成上、下兩部分幾何體的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•海淀區(qū)一模)已知菱形ABCD中,AB=4,∠BAD=60°(如圖1所示),將菱形ABCD沿對(duì)角線BD翻折,使點(diǎn)C翻折到點(diǎn)C1的位置(如圖2所示),點(diǎn)E,F(xiàn),M分別是AB,DC1,BC1的中點(diǎn).

(Ⅰ)證明:BD∥平面EMF;
(Ⅱ)證明:AC1⊥BD;
(Ⅲ)當(dāng)EF⊥AB時(shí),求線段AC1的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•三明模擬)某公園里有一造型別致的小屋,其墻面與水平面所成的角為θ,小屋有一扇面向正南的窗戶(hù),現(xiàn)要在窗戶(hù)的上方搭建一個(gè)與水平面平行的遮陽(yáng)篷,如圖1所示.如圖2是遮陽(yáng)篷的截面示意圖,AB表示窗戶(hù)上、下邊框的距離,AB=m,CD表示遮陽(yáng)篷.已知該公園夏季正午太陽(yáng)最高這一天,太陽(yáng)光線與水平面所成角為α,冬季正午太陽(yáng)最低這一天,太陽(yáng)光線與水平面所成角為β(α>β).若要使得夏季正午太陽(yáng)最高這一天太陽(yáng)光線不從窗戶(hù)直射進(jìn)室內(nèi),而冬季正午太陽(yáng)最低這一天太陽(yáng)光線又恰能最大限度地直射進(jìn)室內(nèi),那么遮陽(yáng)篷的伸出長(zhǎng)度CD和遮陽(yáng)篷與窗戶(hù)上邊框的距離BC各為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案