sin15°•sin30°•sin75°的值等于( 。
A、
3
4
B、
3
8
C、
1
8
D、
1
4
分析:利用三角函數(shù)的誘導(dǎo)公式將sin75°用ccos15°代替;再利用二倍角的正弦公式化簡求值.
解答:解:sin15°•sin30°•sin75°
=
1
2
sin15°cos15°

=
1
4
sin30°

=
1
8

故選C
點(diǎn)評(píng):本題考查三角函數(shù)的誘導(dǎo)公式、三角函數(shù)的二倍角的正弦公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)求 
1-2cos10°sin10°
1-cos2170°
-cos370°
 的值;
(2)若α>0,β>0,且α+β=15°,求
sinα+cos15°sinβ
cosα-sin15°sinβ
 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列各等式:sin220°+cos250°+sin20°cos50°=
3
4
,sin215°+cos245°+sin15°cos45°=
3
4
,sin2120°+cos2150°+sin120°cos150°=
3
4
,根據(jù)其共同特點(diǎn),寫出能反映一般規(guī)律的等式
sin2α+cos2(α+30°)+sinαcos(α+30°)=
3
4
sin2α+cos2(α+30°)+sinαcos(α+30°)=
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有四個(gè)關(guān)于三角函數(shù)的命題:p1:sin15°+cos15°>sin16°+cos16°;p2:若一個(gè)三角形兩內(nèi)角α、β滿足sinα•cosβ<0,則此三角形為鈍角三角形; p3:對(duì)任意的x∈[0,π],都有
1-cos2x
2
=sinx;p4:要得到函數(shù)y=sin(
x
2
-
π
4
)
的圖象,只需將函數(shù)y=sin
x
2
的圖象向右平移
π
4
個(gè)單位.其中為假命題的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:(1)cos(15°-α)sin15°-sin(165°+α)cos(-15°);

(2)cos(60°-α)-sin(60°-α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)求 
1-2cos10°sin10°
1-cos2170°
-cos370°
 的值;
(2)若α>0,β>0,且α+β=15°,求
sinα+cos15°sinβ
cosα-sin15°sinβ
 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案