精英家教網 > 高中數學 > 題目詳情

本題共有2個小題,第(1)小題滿分6分,第(2)小題滿分6分.

如圖,已知正四棱柱的底面邊長是,體積是分別是棱、的中點.

(1)求直線與平面所成的角(結果用反三角函數表示);

(2)求過的平面與該正四棱柱所截得的多面體的體積.

 

【答案】

(1). (2).

【解析】

試題分析:(1)連結,,

直線與平面所成的角等于直線與平面所成的角.

連結,連結,

是直線與平面所成的角. 2分

中,, 4分

.

直線與平面所成的角等于. 6分

(2)正四棱柱的底面邊長是,體積是,

. 8分

;

, 11分

多面體的體積為. 12分

考點:本題主要考查正四棱柱的幾何特征,角的計算,體積計算。

點評:典型題,立體幾何題,是高考必考內容,往往涉及垂直關系、平行關系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,體積計算利用了“間接法”。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

本題共有2個小題,第1小題滿分6分,第2小題滿分10分.
已知a為實數,f(x)=a-
22x+1
(x∈R)

(1)求證:對于任意實數a,y=f(x)在(-∞,+∞)上是增函數;
(2)當f(x)是奇函數時,若方程f-1(x)=log2(x+t)總有實數根,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2005•上海模擬)本題共有2個小題,第1小題滿分8分,第2小題滿分6分
過直角坐標平面xOy中的拋物線y2?2px (p>0)的焦點F作一條傾斜角為
π4
的直線與拋物線相交于A、B兩點.
(1)用p表示A、B之間的距離并寫出以AB為直徑的圓C方程;
(2)若圓C于y軸交于M、N兩點,寫出M、N的坐標,證明∠MFN的大小是與p無關的定值,并求出這個值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分14分)本題共有2個小題,第1小題滿分8分,第2小題滿分6分.

已知函數.

(1)若,求函數的值;

(2)求函數的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

(本大題滿分13分)本題共有2個小題,第1小題滿分5分,第2小題滿分8分.

如圖所示,為了制作一個圓柱形燈籠,先要制作4個全等的矩形骨架,總計耗用9.6米鐵絲,骨架把圓柱底面8等份,再用S平方米塑料片制成圓柱的側面和下底面(不安裝上底面).

(1)當圓柱底面半徑取何值時,取得最大值?并求出該

最大值(結果精確到0.01平方米);

(2)在燈籠內,以矩形骨架的頂點為點,安裝一些霓虹燈,當燈籠的底面半徑為0.3米時,求圖中兩根直線所在異面直線所成角的大。ńY果用反三角函數表示)

查看答案和解析>>

科目:高中數學 來源:2011-2012學年上海市高級中高三第二次月考試卷數學 題型:解答題

(本小題滿分12分)本題共有2個小題,第1小題滿分6分,第2小題滿分6分.

 已知向量且與向量夾角為,其中A,B,C是的內角。

(1)求角B的大;

(2)求的取值范圍。

 

 

查看答案和解析>>

同步練習冊答案