A. | $T=2π,{y_{max}}=2\sqrt{3}$ | B. | $T=π,{y_{max}}=2\sqrt{3}$ | C. | T=π,ymax=3 | D. | T=π,ymax=1 |
分析 利用二倍角公式、兩角差的正弦函數(shù)化簡函數(shù)為一個角的一個三角函數(shù)的形式,直接利用周期公式直接求函數(shù)f(x)的最小正周期,以及最大值.
解答 解:函數(shù)$y=-2{sin^2}x-2\sqrt{3}sinxcosx$=-$\sqrt{3}$sin2x-cos2x+1=-2sin(2x+$\frac{π}{6}$)+1,
所以函數(shù)的最小正周期:T=$\frac{2π}{2}$=π;最大值為3.
故選:C.
點評 本題考查三角函數(shù)的化簡,二倍角公式與兩角和的正弦函數(shù)的應用,考查三角函數(shù)的周期性及其求法,計算能力.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $2\sqrt{3}π,3π$ | B. | $4\sqrt{3}π,3π$ | C. | $\sqrt{3}π,2π$ | D. | 3π,2π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①④ | B. | ②③ | C. | ②③④ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 表示該組上的個體在樣本中出現(xiàn)的頻率 | |
B. | 表示取某數(shù)的頻率 | |
C. | 表示該組上的個體數(shù)與組距的比值 | |
D. | 表示該組上的個體在樣本中出現(xiàn)的頻率與組距的比值 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-2,-1] | B. | (-2,-1] | C. | [-3,1] | D. | [-2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com