【題目】已知命題p:函數(shù)f(x)=x2+2mx+1在(-2,+∞)上單調(diào)遞增;命題q:函數(shù)g(x)=2x2+2(m-2)x+1的圖象恒在x軸上方,若p∨q為真,p∧q為假,求m的取值范圍.
【答案】{x|m≥3或1<m<2}
【解析】
先分別求出命題、為真時(shí),的范圍,由p∨q為真,p∧q為假,可得p、q一真一假,再討論真假,假真的情況即可
函數(shù)f(x)=x2+2mx+1在(-2,+∞)上單調(diào)遞增,則-m≤-2,
∴m≥2,即p:m≥2;
函數(shù)g(x)=2x2+2(m-2)x+1的圖象恒在x軸上方,則不等式g(x)>0恒成立,
故Δ=8(m-2)2-8<0,
解得1<m<3,即q:1<m<3;
若p∨q為真,p∧q為假,則p、q一真一假,
當(dāng)p真q假時(shí),
由,得m≥3,
當(dāng)p假q真時(shí),
由,得1<m<2,
綜上,m的取值范圍是{x|m≥3或1<m<2}.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形CDEF為正方形,四邊形ABCD為梯形,,,,平面ABCD.
求BE與平面EAC所成角的正弦值;
線段BE上是否存在點(diǎn)M,使平面平面DFM?若存在,求的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個(gè)不同的極值點(diǎn).
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè),討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,,若對(duì)任意成立,且數(shù)列滿足:,.
(1)求函數(shù)的解析式;
(2)求證:;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別是, ,且點(diǎn)在橢圓上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的左頂點(diǎn)為,過點(diǎn)的直線與橢圓相交于異于的不同兩點(diǎn), ,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若函數(shù)有兩個(gè)不同的極值點(diǎn),求實(shí)數(shù)的取值范圍;
(2)若,,,且當(dāng)時(shí),不等式恒成立,試求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若兩直線的傾斜角分別為 與,則下列四個(gè)命題中正確的是( )
A. 若<,則兩直線的斜率:k1 < k2 B. 若=,則兩直線的斜率:k1= k2
C. 若兩直線的斜率:k1 < k2 ,則< D. 若兩直線的斜率:k1= k2 ,則=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:.
Ⅰ直線l的參數(shù)方程化為極坐標(biāo)方程;
Ⅱ求直線l與曲線C交點(diǎn)的極坐標(biāo)其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對(duì)于曲線f(x)=-ex-x(e為自然對(duì)數(shù)的底數(shù))的任意切線l1,總存在曲線g(x)=ax+2cosx的切線l2,使得l1⊥l2,則實(shí)數(shù)a的取值范圍為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com