【題目】已知函數(shù)有兩個(gè)零點(diǎn).

1)若函數(shù)的兩個(gè)零點(diǎn)是,求的值,并寫出不等式的解集;

2)當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),求的取值范圍.

【答案】1,解集為,2

【解析】

1)根據(jù)題意,得到是方程的兩個(gè)實(shí)數(shù)根,由此,列出方程組求解,得出,再解不等式,即可得出結(jié)果.

2)根據(jù)題意,得到是方程的兩根,由根與系數(shù)關(guān)系,得到,根據(jù)二次函數(shù)性質(zhì),以及題中條件,即可求出結(jié)果.

1)∵是函數(shù)的兩個(gè)零點(diǎn),

是方程的兩個(gè)實(shí)數(shù)根,

解得

所以

因此不等式即為,解得:;

∴不等式的解集為

2)因?yàn)楹瘮?shù)的兩個(gè)零點(diǎn)為,

是方程的兩根,

,

因?yàn)?/span>,是開(kāi)口向下,對(duì)稱軸為的二次函數(shù)

在區(qū)間上單調(diào)遞減,

因此,

的最大值為,最小值是,

所以的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知對(duì)數(shù)函數(shù)過(guò)點(diǎn),.

1)求的解析式,并指出的定義域;

2)設(shè),求函數(shù)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AD⊥平面PCD,PD⊥CD,底面ABCD是梯形,AB∥DC,AB=AD=PD=1,CD=2AB, 為棱PC上一點(diǎn).

()若點(diǎn)是PC的中點(diǎn),證明:B∥平面PAD;

() 試確定的值使得二面角-BD-P為60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)生物死亡后,其體內(nèi)原有的碳14的含量大約每經(jīng)過(guò)5730年衰減為原來(lái)的一半,這個(gè)時(shí)間稱為半衰期201976日,第43屆世界遺產(chǎn)大會(huì)宣布,中國(guó)良渚古城遺址成功申遺,獲準(zhǔn)列入世界遺產(chǎn)名錄.目前中國(guó)世界遺產(chǎn)總數(shù)已達(dá)55處,位居世界第一.今年暑期,某中學(xué)的考古學(xué)興趣小組對(duì)良渚古城水利系統(tǒng)中一條水壩的建筑材料(草裹泥)上提取的草莖遺存進(jìn)行碳14年代學(xué)檢測(cè),檢測(cè)出碳14的殘留量約為初始量的54%.利用參考數(shù)據(jù):,請(qǐng)你推斷上述所提取的草莖遺存物距今大約有_______________________年(精確到1年).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,D,E分別為BC,AC的中點(diǎn),AB=BC

求證:(1A1B1∥平面DEC1;

2BEC1E

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)fx)的最小值為1,且f0)=f2)=3

1)求fx)的解析式;

2)若fx)在區(qū)間[2aa+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;

3)在區(qū)間[11]上,yfx)的圖象恒在y2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新一屆中央領(lǐng)導(dǎo)集體非常重視勤儉節(jié)約,從光盤行動(dòng)節(jié)約辦春晚.到飯店吃飯是吃光盤子或時(shí)打包帶走,稱為光盤族,否則稱為非光盤族.政治課上政治老師選派幾位同學(xué)組成研究性小組,從某社區(qū)[25,55]歲的人群中隨機(jī)抽取人進(jìn)行了一次調(diào)查,得到如下統(tǒng)計(jì)表:

組數(shù)

分組

頻數(shù)

頻率

光盤族占本組比例

1

[25,30

50

005

30%

2

[30,35

100

010

30%

3

[35,40

150

015

40%

4

[40,45

200

020

50%

5

[45,50

a

b

65%

6

[50,55

200

020

60%

1)求的值,并估計(jì)本社區(qū)[25,55)歲的人群中光盤族所占比例;

2)從年齡段在[35,45)的光盤族中采用分層抽樣方法抽取8人參加節(jié)約糧食宣傳活動(dòng),并從這8人中選取2人作為領(lǐng)隊(duì).求選取的2名領(lǐng)隊(duì)分別來(lái)自[35,40)與[40,45)兩個(gè)年齡段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一則“清華大學(xué)要求從 2017級(jí)學(xué)生開(kāi)始,游泳達(dá)到一定標(biāo)準(zhǔn)才能畢業(yè)”的消息在體育界和教育界引起了巨大反響.其實(shí),已有不少高校將游泳列為必修內(nèi)容.

某中學(xué)擬在高一-下學(xué)期開(kāi)設(shè)游泳選修課,為了了解高--學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對(duì)100名高一新生進(jìn)行了問(wèn)卷調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計(jì)

男生

40

女生

30

合計(jì)

已知在這100人中隨機(jī)抽取1人,抽到喜歡游泳的學(xué)生的概率為.

(1).請(qǐng)將上述列聯(lián)表補(bǔ)充完整,并判斷是否可以在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為喜歡游泳與性別有關(guān).

(2)已知在被調(diào)查的學(xué)生中有6名來(lái)自高一(1) 班,其中4名喜歡游泳,現(xiàn)從這6名學(xué)生中隨機(jī)抽取2人,求恰有1人喜歡游泳的概率.

附:

0.10

0.050

0.025

0.010

0.005

0.001

2.706

/td>

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近期,濟(jì)南公交公司分別推出支付寶和微信掃碼支付乘車活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來(lái)越多的人開(kāi)始使用掃碼支付.某線路公交車隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,用表示活動(dòng)推出的天數(shù), 表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計(jì)數(shù)據(jù)如表所示:

根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.

(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi), (均為大于零的常數(shù))哪一個(gè)適宜作為掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程類型?(給出判斷即可,不必說(shuō)明理由);

(2)根據(jù)(1)的判斷結(jié)果及表中的數(shù)據(jù),建立關(guān)于的回歸方程,并預(yù)測(cè)活動(dòng)推出第天使用掃碼支付的 人次;

(3)推廣期結(jié)束后,車隊(duì)對(duì)乘客的支付方式進(jìn)行統(tǒng)計(jì),結(jié)果如下

車隊(duì)為緩解周邊居民出行壓力,以萬(wàn)元的單價(jià)購(gòu)進(jìn)了一批新車,根據(jù)以往的經(jīng)驗(yàn)可知,每輛車每個(gè)月的運(yùn)營(yíng)成本約為萬(wàn)元.已知該線路公交車票價(jià)為元,使用現(xiàn)金支付的乘客無(wú)優(yōu)惠,使用乘車卡支付的乘客享受折優(yōu)惠,掃碼支付的乘客隨機(jī)優(yōu)惠,根據(jù)統(tǒng)計(jì)結(jié)果得知,使用掃碼支付的乘客中有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠,有的概率享受折優(yōu)惠.預(yù)計(jì)該車隊(duì)每輛車每個(gè)月有萬(wàn)人次乘車,根據(jù)給數(shù)據(jù)以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在不考慮其它因素的條件下,按照上述收費(fèi)標(biāo)準(zhǔn),假設(shè)這批車需要年才能開(kāi)始盈利,求的值.

參考數(shù)據(jù):

其中其中

參考公式:

對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為: .

查看答案和解析>>

同步練習(xí)冊(cè)答案