設F1,F(xiàn)2是雙曲線x2-
y2
4
=1的左、右兩個焦點,若雙曲線右支上存在一點P,是PF1⊥PF2,且|PF1|=λ|PF2|,則λ的值為
 
考點:雙曲線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:由雙曲線方程求出a,b,c,再設|PF2|=t,則|PF1|=λt(λ>1),由PF1⊥PF2得(λt)2+t2=(2
5
2①由雙曲線的定義可得,λt-t=2②,解出方程組即可得到所求值.
解答: 解:由雙曲線x2-
y2
4
=1得,a=1,b=2,c=
5

設|PF2|=t,則|PF1|=λt(λ>1),
則由PF1⊥PF2得,|PF1|2+|PF2|2=|F1F2|2
即有(λt)2+t2=(2
5
2
由雙曲線的定義可得,λt-t=2②
由①②得λ=2(
1
2
舍去).
故答案為:2.
點評:本題考查雙曲線的方程和性質,以及定義的運用,考查運算能力,屬于中檔題和易錯題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若A(x1,y1)、B(x2,y2)為平面直角坐標系xOy上的兩點,定義由A點到B點的一種折線距離ρ(A,B)=|x2-x1|+|y2-y1|.已知點N(1,0),點M為直線3x+4y-5=0上的動點,則ρ(M,N)的最小值是( 。
A、
2
5
B、
1
2
C、
14
25
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lg
1+2xa
2
(a∈R).
(1)試確定f(x)的定義域;
(2)如果函數(shù)F(x)=2f(x)-f(2x)有兩個不同的零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+
a
x
在區(qū)間[2,+∞)上是增函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在△ABC中,AB>AC,AD為BC邊上的高,AM是BC邊上的中線,求證:點M不在線段CD上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC的內角A,B,C的對邊分別為a,b,c,若a=10,B=45°,b=7,則△ABC( 。
A、無解B、僅有一解
C、僅有兩解D、無法判斷

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若滿足條件C=30°、AB=
6
、BC=a的△ABC有兩個,那么a的取值范圍是(  )
A、(1,
6
B、(
2
,
6
C、(
6
,2
6
D、(1,2
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對定義域為D的函數(shù),若存在距離為d的兩條平行直線l1:y=kx+m1和l2:y=kx+m2,使得當x∈D時,kx+m1≤f(x)≤kx+m2恒成立,則稱函數(shù)f(x)在x∈D有一個寬度為d的通道.有下列函數(shù):
①f(x)=
1
x
;②f(x)=sinx;③f(x)=
x2-1
;④f(x)=x3+1.
其中在[1,+∞)上通道寬度為(x2-
1
x
)5
的函數(shù)是( 。
A、①③B、②③C、②④D、①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x-1
x+1

(1)寫出函數(shù)的對稱中心;
(2)求函數(shù)f(
x
)的值域.

查看答案和解析>>

同步練習冊答案