精英家教網 > 高中數學 > 題目詳情
已知函數y=f(x)是奇函數,當x≥0時,f(x)=3x-1,設f(x)的反函數是y=g(x),則g(-8)=____________.

解析:當x>0時,-x<0,f(-x)=3-x-1.

    又∵f(x)是奇函數,

    ∴f(-x)=-f(x),即-f(x)=3-x-1.

    ∴f(x)=1-3-x.

    ∴f(x)=.

    ∴f-1(x)=.

    ∴f-1(-8)=g(-8)=-log3(1+8)=-log332=-2.

答案:-2

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數y=f(x+
1
2
)
為奇函數,設g(x)=f(x)+1,則g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)
=( 。
A、1005B、2010
C、2011D、4020

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)=
lnx
x

(1)求函數y=f(x)的圖象在x=
1
e
處的切線方程;
(2)求y=f(x)的最大值;
(3)比較20092010與20102009的大小,并說明為什么?

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=f(x)=
lnx
x

(1)求函數y=f(x)的圖象在x=
1
e
處的切線方程;
(2)求y=f(x)的單調區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=
f(x)
ex
(x∈R)
滿足f′(x)>f(x),則f(1)與ef(0)的大小關系為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

給出如下命題:
命題p:已知函數y=f(x)=
1-x3
,則|f(a)|<2(其中f(a)表示函數y=f(x)在x=a時的函數值);
命題q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求實數a的取值范圍,使命題p,q中有且只有一個為真命題.

查看答案和解析>>

同步練習冊答案