|
(1) |
證明:取CE中點M,連接FM,BM…………………………………2分 F為CD的中點,∴FM//DE,且FM=DE 又,∴AB//FM且AB=FM ∴四邊形ABMF為平行四邊形…………………………………………4分 AF//BM, 又AF平面BCE,BM平面BCE. AF//平面BCE……………………………………………………………………6分 |
(2) |
解:記平面ABC∩平面ECD=l, AB//DE且AB平面CDE,DE平面CDE AB//平面CDE,AB////DE……………………………………………8分 DE平面ACD,DECD,DEAC,∴ 即為所求二面角的平面角……………………………………………10分 又△ACD為等邊三角形,∴ (可以用向量法求解) |
科目:高中數(shù)學 來源:山西省實驗中學2006-2007學年度第一學期高三年級第三次月考 數(shù)學試題 題型:044
|
查看答案和解析>>
科目:高中數(shù)學 來源:河南省信陽市商城高中2006-2007學年度高三數(shù)學單元測試、不等式二 題型:044
解答題:解答應寫出文字說明,證明過程或演算步驟.
證明下列不等式:
(文)若x,y,z∈R,a,b,c∈R+,則z2≥2(xy+yz+zx)
(理)若x,y,z∈R+,且x+y+z=xyz,則≥2
查看答案和解析>>
科目:高中數(shù)學 來源:河南省信陽市商城高中2006-2007學年度高三數(shù)學單元測試、不等式二 題型:044
|
查看答案和解析>>
科目:高中數(shù)學 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學沖刺預測卷(四)附答案 題型:044
解答題:解答應寫出文字說明,證明過程或演算步驟.
如圖,直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=,BC=.橢圓C以A、B為焦點且經(jīng)過點D.
(1)建立適當坐標系,求橢圓C的方程;
(2)(文)是否存在直線l與橢圓C交于M、N兩點,且線段MN的中點為C,若存在,求l與直線AB的夾角,若不存在,說明理由.
(理)若點E滿足,問是否存在不平行AB的直線l與橢圓C交于M、N兩點且|ME|=|NE|,若存在,求出直線l與AB夾角的范圍,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com