如圖,四棱錐S﹣ABCD的底面為正方形,SD⊥平面ABCD,SD=AD=2,請(qǐng)建立空間直角坐標(biāo)系解決下列問(wèn)題.

(1)求證:;(2)求直線(xiàn)與平面所成角的正弦值.
(1)詳見(jiàn)解析;(2)

試題分析:(1) 建立以為坐標(biāo)原點(diǎn),所在的直線(xiàn)分別為軸的空間直角坐標(biāo)系,寫(xiě)出的坐標(biāo),計(jì)算其數(shù)量積即可證明垂直;(2)取平面的法向量,利用向量的數(shù)量積,計(jì)算向量的夾角,轉(zhuǎn)化為線(xiàn)面角.
試題解析:(1)建立以為坐標(biāo)原點(diǎn),所在的直線(xiàn)分別為軸的空間直角坐標(biāo)系,
,,,,
,
,

(2)取平面ADS的一個(gè)法向量為,則

所以直線(xiàn)與平面所成角的正弦值為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,四邊形為直角梯形,,為等邊三角形,且平面平面,中點(diǎn).

(1)求證:;
(2)求平面與平面所成的銳二面角的余弦值;
(3)在內(nèi)是否存在一點(diǎn),使平面,如果存在,求的長(zhǎng);如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,平面平面是等腰直角三角形,,四邊形是直角梯形,,,點(diǎn)、分別為、的中點(diǎn).

(1)求證:平面;
(2)求直線(xiàn)和平面所成角的正弦值;
(3)能否在上找到一點(diǎn),使得平面?若能,請(qǐng)指出點(diǎn)的位置,并加以證明;若不能,請(qǐng)說(shuō)明理由 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知O是平面上一定點(diǎn),A﹑B﹑C是平面上不共線(xiàn)的三個(gè)點(diǎn),動(dòng)點(diǎn)P滿(mǎn)足
OP
=
OA
+λ(
AB
|
AB
|sinB
+
AC
|
AC
|sinC
)λ∈[0,+∞),則點(diǎn)P的軌跡一定通過(guò)△ABC的( 。
A.外心B.內(nèi)心C.重心D.垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線(xiàn)的法向量為,則該直線(xiàn)的傾斜角為        .(用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列的前n項(xiàng)和為,且,則過(guò)點(diǎn)的直線(xiàn)的一個(gè)方向向量的坐標(biāo)可以是(    )
A.B.(2,4)C.D.(-1,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,三棱柱ABC-A1B1C1中,BC⊥側(cè)面AA1C1C,AC=BC=1,CC1=2, ∠CAA1= ,D、E分別為AA1、A1C的中點(diǎn).

(1)求證:A1C⊥平面ABC;(2)求平面BDE與平面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐的底面為矩形,是四棱錐的高,
所成角為的中點(diǎn),上的動(dòng)點(diǎn).
(Ⅰ)證明:
(Ⅱ)若,求直線(xiàn)與平面所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知平行六面體中,    

查看答案和解析>>

同步練習(xí)冊(cè)答案