精英家教網 > 高中數學 > 題目詳情

已知實數x、y滿足數學公式,則數學公式的取值范圍________.


分析:先根據根的分布列出約束條件畫出可行域,再利用幾何意義求最值,本例中,的取值的幾何意義是斜率.
解答:解:作出可行域如圖陰影部分所示:
目標函數 可以認為是原點(2,2)與可行域內一點(x,y)連線OQ的斜率.
當連線過點A時,其最小值為:-
的取值范圍
故答案為:
點評:巧妙識別目標函數的幾何意義是我們研究規(guī)劃問題的基礎,縱觀目標函數包括線性的與非線性,非線性問題的介入是線性規(guī)劃問題的拓展與延伸,使得規(guī)劃問題得以深化.本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知實數x,y滿足
x-y+2≥0
x+y≥0
x≤1
,則z=2x+y的最小值是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知實數x、y滿足
x≥1
y≥2
x+y≤4
,則u=
x+y
x
的取值范圍是
[2,4]
[2,4]

查看答案和解析>>

科目:高中數學 來源: 題型:

已知實數x,y滿足
x+y≤2
x-y≤2
0≤x≤1
,則z=2x-3y的最大值是
6
6

查看答案和解析>>

科目:高中數學 來源: 題型:

已知實數x,y滿足
y2-x≤0
x+y≤2
,則2x+y的最小值為
-
1
8
-
1
8
,最大值為
6
6

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•安徽模擬)已知實數x,y滿足|2x+y+1|≤|x+2y+2|,且|y|≤1,則z=2x+y的最大值為( 。

查看答案和解析>>

同步練習冊答案