【題目】已知函數(shù)f(x)=(ax﹣1)(x+b),如果不等式f(x)>0的解集是(﹣1,3),則不等式f(﹣x)<0的解集是(
A.(﹣∞,﹣1)∪(3,+∞)
B.(﹣3,1)
C.(﹣∞,﹣3)∪(1,+∞)
D.(﹣1,3)

【答案】C
【解析】解;由題意,不等式f(x)>0的解集是(﹣1,3), 所以f(x)<0的解是:x>3或x<﹣1,
于是由f(﹣x)<0得:﹣x>3或﹣x<﹣1,
解得x<﹣3或x>1;
所以不等式f(﹣x)<0的解集是
(﹣∞,﹣3)∪(1,+∞).
故選:C.
【考點精析】本題主要考查了解一元二次不等式的相關(guān)知識點,需要掌握求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項系數(shù)為正時,小于取中間,大于取兩邊才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年5月20日,針對部分“二線城市”房價上漲過快,媒體認為國務(wù)院常務(wù)會議可能再次確定五條措施(簡稱“國五條”).為此,記者對某城市的工薪階層關(guān)于“國五條”態(tài)度進行了調(diào)查,隨機抽取了60人,作出了他們的月收入的頻率分布直方圖(如圖),同時得到了他們的月收入情況與“國五條”贊成人數(shù)統(tǒng)計表(如表):

月收入(百元)

贊成人數(shù)

[15,25)

8

[25,35)

7

[35,45)

10

[45,55)

6

[55,65)

2

[65,75)

2


(Ⅰ)試根據(jù)頻率分布直方圖估計這60人的中位數(shù)和平均月收入;
(Ⅱ)若從月收入(單位:百元)在[65,75)的被調(diào)查者中隨機選取2人進行追蹤調(diào)查,求被選取的2人都不贊成的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,則PA與BD所成角的度數(shù)為(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≤0時,f(x)=x2+2x.

(1)求函數(shù)f(x)(x∈R)的解析式;
(2)現(xiàn)已畫出函數(shù)f(x)在y軸左側(cè)的圖象,如圖所示,請補全完整函數(shù)f(x)的圖象;
(3)求使f(x)>0的實數(shù)x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓C滿足:①圓心C在射線y=2x(x>0)上; ②與x軸相切;
③被直線y=x+2截得的線段長為
(1)求圓C的方程;
(2)過直線x+y+3=0上一點P作圓C的切線,設(shè)切點為E、F,求四邊形PECF面積的最小值,并求此時 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答題。
(1)已知方程x2+(m﹣3)x+m=0有兩個不等正實根,求實數(shù)m的取值范圍.
(2)不等式(m2﹣2m﹣3)x2﹣(m﹣3)x﹣1<0對任意x∈R恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以 為一條漸近線的雙曲線C的右焦點為
(1)求該雙曲線C的標(biāo)準(zhǔn)方程;
(2)若斜率為2的直線l在雙曲線C上截得的弦長為 ,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果將函數(shù)f(x)=sin2x圖象向左平移φ(φ>0)個單位,函數(shù)g(x)=cos(2x﹣ )圖象向右平移φ個長度單位后,二者能夠完全重合,則φ的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A={x|x2+x>0},B={x|x2+ax+b≤0},且A∩B={x|0<x≤2},A∪B=R,求a、b的值.

查看答案和解析>>

同步練習(xí)冊答案