【題目】已知函數(shù).
(Ⅰ)若函數(shù)在區(qū)間(其中)上存在極值,求實數(shù)的取值范圍.
(Ⅱ)如果當時,不等式恒成立,求實數(shù)的取值范圍.
(Ⅲ)求證.
【答案】(Ⅰ)(Ⅱ)(Ⅲ)見解析
【解析】試題分析:(Ⅰ)求出函數(shù)的極值,在探討函數(shù)在區(qū)間(其中a>0)上存在極值,尋找關(guān)于a的不等式,求出
實數(shù)a的取值范圍;(Ⅱ)如果當x≥1時,不等式恒成立,把k分離出來,轉(zhuǎn)化為求函數(shù)最值.(Ⅲ)借助于(Ⅱ)的結(jié)論得令,則有,∴,累加,放縮即可證得結(jié)論.
證明不等式.
試題解析:
(Ⅰ),∴時, ,此時單調(diào)遞增;
當時, ,此時單調(diào)遞減.
又,∴在處取得極大值,
∵若使得在區(qū)間上存在極值,其中,∴,
∴.∴的取值范圍為.
(Ⅱ)不等式,
即恒成立,令,∴,
令,∴,∵,∴,∴在上單調(diào)遞增,
∴,∴, 在上也單調(diào)增,
∴,∴.
(Ⅲ)由(Ⅱ)知: 恒成立,即,令,則有,∴,∴,
;
;
,
疊加得: ,
∴,
∴,
∴,得證.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=(ex﹣1)(x﹣1)k , k∈N* , 若函數(shù)y=f(x)在x=1處取到極小值,則k的最小值為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)節(jié)能降耗技術(shù)改造后,在生產(chǎn)某產(chǎn)品過程中幾錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸)的幾 組對應(yīng)數(shù)據(jù)如表所示:
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | a |
若根據(jù)表中數(shù)據(jù)得出y關(guān)于x的線性回歸方程為 =0.7x+0.35,則表中a的值為( )
A.3
B.3.15
C.3.5
D.4.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C1的極坐標方程為ρcos(θ﹣ )=﹣1,曲線C2的極坐標方程為ρ=2 cos(θ﹣ ).以極點為坐標原點,極軸為x軸正半軸建立平面直角坐標系.
(1)求曲線C2的直角坐標方程;
(2)求曲線C2上的動點M到曲線C1的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知奇函數(shù)f(x)是定義在(﹣2,2)上的減函數(shù),則不等式f( )+f(2x﹣1)>0的解集是( )
A.(﹣∞, )
B.[﹣ ,+∞)
C.(﹣6,﹣ )
D.(﹣ , )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ax2﹣(a﹣1)x﹣lnx(a∈R且a≠0).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)記函數(shù)y=F(x)的圖象為曲線C.設(shè)點A(x1 , y1),B(x2 , y2)是曲線C上的不同兩點.如果在曲線C上存在點M(x0 , y0),使得:①x0= ;②曲線C在點M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值和諧切線”.當a=2時,函數(shù)f(x)是否存在“中值和諧切線”,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(0,2),B(4,6), =t1 +t2 ,其中t1、t2為實數(shù);
(1)若點M在第二或第三象限,且t1=2,求t2的取值范圍;
(2)求證:當t1=1時,不論t2為何值,A、B、M三點共線;
(3)若t1=a2 , ⊥ ,且△ABM的面積為12,求a和t2的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com