9.我國是世界上嚴(yán)重缺水的國家之一,城市缺水問題較為突出.某市政府為了節(jié)約生活用水,計劃在本市試行居民生活用水定額管理,即確定一個居民月用水量的標(biāo)準(zhǔn),為了確定一個較為合理的標(biāo)準(zhǔn),必須先了解全市居民日常用水量的分布情況.現(xiàn)采用抽樣調(diào)查的方式,獲得了n位居民某年的月均用水量(單位:),樣本統(tǒng)計結(jié)果如圖表:
分組頻數(shù)頻率
[0,1)a
[1,2)0.19
[2,3)50b
[3,4)0.23
[4,5)0.18
[5,6)5
(I)分別求出n,a,b的值;
(II)若從樣本中月均用水量在[5,6](單位:)的5位居民中任選2人作進一步的調(diào)查研究,求月均用水量最多的居民被選中的概率(5位居民的月均用水量均不相等).

分析 (I)從直方圖中得在[2,3)小組中的頻率,利用頻率分布直方圖中$\frac{50}{n}$=b=0.25,求出b,再利用樣本容量等于頻數(shù)除以頻率得出n,最后求出a處的數(shù);
(II)利用列舉法確定基本事件的個數(shù),根據(jù)古典概率計算公式計算即可.

解答 解:(Ⅰ)由頻率分布直方圖得月均用水量在[2,3)小組中的頻率為0.25×1=0.25,即b=0.25------(2分)
又∵$\frac{50}{n}$=b=0.25,∴n=200-----(4分)
∴a=$\frac{25}{200}$=0.125-------(6分)
(Ⅱ)記樣本中月均用水量在[5,6](單位:t)的5位居民為a,b,c,d,e,且不妨設(shè)e為月均用水量最多的居民.記月均用水量最多的居民被選中為事件A,所以基本事件為:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e)共計10個基本事件-----(8分)
事件A包含的基本事件有(a,e),(b,e),(c,e),(d,e),共4個-----(10分)
所以月均用水量最多的居民被選中概率P(A)=0.4---(12分)

點評 用樣本估計總體,是研究統(tǒng)計問題的一個基本思想方法.頻率分布直方圖中小長方形的面積=組距×$\frac{頻率}{組距}$=頻率,各個矩形面積之和等于1,能根據(jù)直方圖求頻率,屬于常規(guī)題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)解方程:log2(4x+4)=x+log2(2x+1-3)
(2)解不等式:log2(log3(log4x))<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知集合$A=\left.{\left\{{x\left|{\frac{3x-5}{x+1}≤1,x∈R}\right.}\right.}\right\}$,集合B={x|x-a|≤1,x∈R}.
(1)求集合A;
(2)若B∩∁RA=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.一元二次不等式x2+bx+c<0的解集為{x|1<x<2},則b+c=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)集合A={x|1<x<3,x∈R},B={x||x-a|<4,x∈R},若x∈A是x∈B的充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.觀察下列式子:
1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,

據(jù)以上式子可以猜想:1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$+…+$\frac{1}{{{{2016}^2}}}$<1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$+…+$\frac{1}{{{{2016}^2}}}$<$\frac{4031}{2016}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=2cosxsin({x+\frac{π}{3}})-\sqrt{3}{sin^2}x+sinxcosx$.
(1)求函數(shù)f(x)的最小正周期T;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)f(x)在$[{-\frac{π}{2},\frac{π}{2}}]$上的圖象;
(3)若當(dāng)$x∈[{\frac{π}{12},\frac{7π}{12}}]$時,f(x)的反函數(shù)為f-1(x),求f-1(1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)復(fù)數(shù)z=$\frac{1}{1-i}+{i^7}$,則|z|=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)已知雙曲線$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1求雙曲線的實軸長、虛軸長、漸近線方程及離心率.
(2)求頂點在原點,對稱軸為坐標(biāo)軸,且經(jīng)過點(-6,-4)的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊答案