1.有下列四個命題,其中假命題是( 。
A.?x0>0,x02≤x0B.?x∈R,3x>0
C.?x0∈R,sinx0+cosx0=2D.?x0∈R,lgx0=0

分析 A,不等式x02≤x0有實數(shù)解;
B,由指數(shù)函數(shù)y=3x的值域可知;
C,sinx0+cosx0=$\sqrt{2}sin({x}_{0}+\frac{π}{4})≤\sqrt{2}$;
對于D,x0=1時,lgx0=0.

解答 解:對于A,不等式x02≤x0有實數(shù)解,故正確;
對于B,由指數(shù)函數(shù)y=3x的值域可知,正確;
對于C,sinx0+cosx0=$\sqrt{2}sin({x}_{0}+\frac{π}{4})≤\sqrt{2}$,故錯;
對于D,x0=1時,lgx0=0,故正確.
故選:C.

點評 本題考查了命題真假的判定,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.若函數(shù)f(x)滿足關(guān)系式f(x)+2f(1-x)=-$\frac{3}{x}$,則f(2)的值為( 。
A.$-\frac{3}{2}$B.$\frac{3}{2}$C.$-\frac{5}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知等比數(shù)列{an}的前n項和為Sn,且6Sn=3n+1+a(n∈N+
(1)求a的值及數(shù)列{an}的通項公式;
(2)設(shè)bn=(1-an)log3(an2•an+1),求$\{\frac{1}{_{n}}\}$的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列函數(shù)中,是減函數(shù)且定義域為(0,+∞)的是( 。
A.y=log2xB.y=$\frac{1}{x^2}$C.y=$\frac{1}{2^x}$D.y=$\frac{1}{{\sqrt{x}}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)f(x)=x2-2ax+a+1在(-∞,1)上單調(diào)遞減,則a的取值范圍是a≥1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若數(shù)列{an}滿足:對任意正整數(shù)n,{an+1-an}為遞減數(shù)列,則稱數(shù)列{an}為“差遞減數(shù)列”.給出下列數(shù)列{an}(n∈N*):
①an=3n,②an=n2+1,③an=$\sqrt{n}$,④an=2n-n,⑤an=ln$\frac{n}{n+1}$
其中是“差遞減數(shù)列”的有( 。
A.③⑤B.①②④C.③④⑤D.②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知在直角坐標系xOy中,圓錐曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}\right.$(θ為參數(shù)),過點P(3,3)的直線l的參數(shù)方程$\left\{\begin{array}{l}x=3+\frac{4}{5}t\\ y=3+\frac{3}{5}t\end{array}\right.$(t為參數(shù)).
(Ⅰ)求原點(0,0)到直線l的距離;
(Ⅱ)設(shè)直線l與圓錐曲線C相交于A,B兩點,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知拋物線x2=-2y的一條弦AB的中點坐標為(-1,-5),則這條弦AB所在的直線方程是(  )
A.y=x-4B.y=2x-3C.y=-x-6D.y=3x-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知直角坐標系中點A(0,1),向量$\overrightarrow{AB}=(-4,-3),\overrightarrow{BC}=(-7,-4)$,則點C的坐標為( 。
A.(11,8)B.(3,2)C.(-11,-6)D.(-3,0)

查看答案和解析>>

同步練習冊答案