【題目】已知f(x)=logax(a>0,a≠1),設(shè)數(shù)列f(a1),f(a2),f(a3),…,f(an)…是首項為4,公差為2的等差數(shù)列.
(I)設(shè)a為常數(shù),求證:{an}成等比數(shù)列;
(II)設(shè)bn=anf(an),數(shù)列{bn}前n項和是Sn , 當時,求Sn .
【答案】證明:(I)f(an)=4+(n﹣1)×2=2n+2,
即logaan=2n+2,可得an=a2n+2 .
∴為定值.
∴{an}為等比數(shù)列.
(II)解:bn=anf(an)=a2n+2logaa2n+2=(2n+2)a2n+2 .
當時,.
Sn=2×23+3×24+4×25++(n+1)2n+2 ①
2Sn=2×24+3×25+4×26++n2n+2+(n+1)2n+3 ②
①﹣②得﹣Sn=2×23+24+25++2n+2﹣(n+1)2n+3
=﹣(n+1)2n+3=16+2n+3﹣24﹣n2n+3﹣2n+3 .
∴Sn=n2n+3 .
【解析】(I)先利用條件求出f(an)的表達式,進而求出{an}的通項公式,再用定義來證{an}是等比數(shù)列即可;
(II)先求出數(shù)列{bn}的通項公式,再對數(shù)列{bn}利用錯位相減法求和即可.
科目:高中數(shù)學 來源: 題型:
【題目】已知是二次函數(shù),其函數(shù)圖像經(jīng)過(0,2),在時取得最小值1.
(1)求的解析式.
(2)求在[k,k+1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知Sn為等差數(shù)列{an}的前n項和,S6=51,a5=13.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}的通項公式是bn= , 求數(shù)列{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市調(diào)研考試后,某校對甲、乙兩個文科班的數(shù)學考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99%的可靠性要求,能否認為“成績與班級有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學生中抽取一人:把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號.試求抽到9號或10號的概率.
參考公式及數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】年月日是第二十七屆“世界水日”,月日是第三十二屆“中國水周”.我國紀念年“世界水日”和“中國水周”活動的宣傳主題為“堅持節(jié)水優(yōu)先,強化水資源管理”.某中學課題小組抽取、兩個小區(qū)各戶家庭,記錄他們月份的用水量(單位:)如下表:
小區(qū)家庭月用水量 | ||||||||||
小區(qū)家庭月用水量 | ||||||||||
(1)根據(jù)兩組數(shù)據(jù)完成下面的莖葉圖,從莖葉圖看,哪個小區(qū)居民節(jié)水意識更好?
(2)從用水量不少于的家庭中,、兩個小區(qū)各隨機抽取一戶,求小區(qū)家庭的用水量低于小區(qū)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| ﹣ |= ,求證: ⊥ ;
(2)設(shè) =(0,1),若 + = ,求α,β的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com