【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|x+1|﹣|x﹣2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范圍.
【答案】
(1)
解:∵f(x)=|x+1|﹣|x﹣2|= ,f(x)≥1,
∴當(dāng)﹣1≤x≤2時(shí),2x﹣1≥1,解得1≤x≤2;
當(dāng)x>2時(shí),3≥1恒成立,故x>2;
綜上,不等式f(x)≥1的解集為{x|x≥1}.
(2)
原式等價(jià)于存在x∈R使得f(x)﹣x2+x≥m成立,
即m≤[f(x)﹣x2+x]max,設(shè)g(x)=f(x)﹣x2+x.
由(1)知,g(x)= ,
當(dāng)x≤﹣1時(shí),g(x)=﹣x2+x﹣3,其開(kāi)口向下,對(duì)稱軸方程為x= >﹣1,
∴g(x)≤g(﹣1)=﹣1﹣1﹣3=﹣5;
當(dāng)﹣1<x<2時(shí),g(x)=﹣x2+3x﹣1,其開(kāi)口向下,對(duì)稱軸方程為x= ∈(﹣1,2),
∴g(x)≤g( )=﹣ + ﹣1= ;
當(dāng)x≥2時(shí),g(x)=﹣x2+x+3,其開(kāi)口向下,對(duì)稱軸方程為x= <2,
∴g(x)≤g(2)=﹣4+2=3=1;
綜上,g(x)max= ,
∴m的取值范圍為(﹣∞, ].
【解析】(1.)由于f(x)=|x+1|﹣|x﹣2|= ,解不等式f(x)≥1可分﹣1≤x≤2與x>2兩類討論即可解得不等式f(x)≥1的解集;
(2.)依題意可得m≤[f(x)﹣x2+x]max , 設(shè)g(x)=f(x)﹣x2+x,分x≤1、﹣1<x<2、x≥2三類討論,可求得g(x)max= ,從而可得m的取值范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的值域的相關(guān)知識(shí),掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的,以及對(duì)絕對(duì)值不等式的解法的理解,了解含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓:()和圓:,已知圓將橢圓的長(zhǎng)軸三等分,橢圓右焦點(diǎn)到右準(zhǔn)線的距離為,橢圓的下頂點(diǎn)為,過(guò)坐標(biāo)原點(diǎn)且與坐標(biāo)軸不重合的任意直線與圓相交于點(diǎn)、.
(1)求橢圓的方程;
(2)若直線、分別與橢圓相交于另一個(gè)交點(diǎn)為點(diǎn)、.
①求證:直線經(jīng)過(guò)一定點(diǎn);
②試問(wèn):是否存在以為圓心,為半徑的圓,使得直線和直線都與圓相交?若存在,請(qǐng)求出實(shí)數(shù)的范圍;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知sinA+ cosA=0,a=2 ,b=2.
(Ⅰ)求c;
(Ⅱ)設(shè)D為BC邊上一點(diǎn),且AD⊥AC,求△ABD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)有唯一零點(diǎn),則a=( 。
A.﹣
B.
C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列{an}的公差d≠0滿足成等比數(shù)列,若=1,Sn是{}的前n項(xiàng)和,則的最小值為________.
【答案】4
【解析】
成等比數(shù)列,=1,可得:= ,即(1+2d)2=1+12d,d≠0,解得d.可得an,Sn.代入利用分離常數(shù)法化簡(jiǎn)后,利用基本不等式求出式子的最小值.
∵成等比數(shù)列,a1=1,
∴= ,
∴(1+2d)2=1+12d,d≠0,
解得d=2.
∴an=1+2(n﹣1)=2n﹣1.
Sn=n+×2=n2.
∴==n+1+﹣2≥2﹣2=4,
當(dāng)且僅當(dāng)n+1=時(shí)取等號(hào),此時(shí)n=2,且取到最小值4,
故答案為:4.
【點(diǎn)睛】
本題考查了等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式,等比中項(xiàng)的性質(zhì),基本不等式求最值,在利用基本不等式求最值時(shí),要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號(hào)取得的條件)的條件才能應(yīng)用,否則會(huì)出現(xiàn)錯(cuò)誤.
【題型】填空題
【結(jié)束】
17
【題目】設(shè)是公比為正數(shù)的等比數(shù)列,,
(1)求的通項(xiàng)公式;
(2)設(shè)是首項(xiàng)為1,公差為2的等差數(shù)列,求數(shù)列的前項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=60°,D是BC上一點(diǎn),AB=31,BD=20,AD=21.
(1)求cos∠B的值;
(2)求sin∠BAC的值和邊BC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,圓與軸負(fù)半軸交于點(diǎn),過(guò)點(diǎn) 的直線,分別與圓交于,兩點(diǎn).
(1)若,,求△的面積;
(2)過(guò)點(diǎn)作圓O的兩條切線,切點(diǎn)分別為E,F(xiàn),求;
(3)若,求證:直線過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“紅燈停,綠燈行”,這是我們每個(gè)人都應(yīng)該也必須遵守的交通規(guī)則.湊齊一撥人就過(guò)馬路﹣﹣不看交通信號(hào)燈、隨意穿行交叉路口的“中國(guó)式過(guò)馬路”不僅不文明而且存在很大的交通安全隱患.一座城市是否存在“中國(guó)式過(guò)馬路”是衡量這座城市文明程度的重要指標(biāo).某調(diào)查機(jī)構(gòu)為了了解路人對(duì)“中國(guó)式過(guò)馬路”的態(tài)度,從馬路旁隨機(jī)抽取30名路人進(jìn)行了問(wèn)卷調(diào)查,得到了如下列聯(lián)表:
男性 | 女性 | 合計(jì) | |
反感 | 10 | ||
不反感 | 8 | ||
合計(jì) | 30 |
已知在這30人中隨機(jī)抽取1人抽到反感“中國(guó)式過(guò)馬路”的路人的概率是.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(在答題卷上直接填寫(xiě)結(jié)果,不需要寫(xiě)求解過(guò)程),并據(jù)此列聯(lián)表數(shù)據(jù)判斷是否有95%的把握認(rèn)為反感“中國(guó)式過(guò)馬路”與性別有關(guān)?
(2)若從這30人中的女性路人中隨機(jī)抽取2人參加一項(xiàng)活動(dòng),記反感“中國(guó)式過(guò)馬路”的人數(shù)為X,求X的分布列及其數(shù)學(xué)期望.
附:,其中n=a+b+c+d
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com