18.函數(shù)f(x)=loga(x+28)-3(a>0且a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A的橫坐標(biāo)為x0,函數(shù)g(x)=a${\;}^{x-{x_0}}}$+4的圖象恒過定點(diǎn)B,則B點(diǎn)的坐標(biāo)為(-27,5).

分析 利用對(duì)數(shù)函數(shù)的性質(zhì)和函數(shù)圖形的平移求得x0,再由指數(shù)函數(shù)的性質(zhì)和函數(shù)的圖象平移求得B的坐標(biāo).

解答 解:∵y=logax恒過定點(diǎn)(1,0),則函數(shù)f(x)=loga(x+28)-3(a>0且a≠1)的圖象恒過定點(diǎn)A(-27,-3),
∴x0=-27,又y=ax恒過定點(diǎn)(0,1),則函數(shù)g(x)=a${\;}^{x-{x_0}}}$+4=ax+27+4的圖象恒過定點(diǎn)B(-27,5).
故答案為:(-27,5).

點(diǎn)評(píng) 本題考查復(fù)合函數(shù)的單調(diào)性,考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的圖象和性質(zhì),考查函數(shù)圖象的平移問題,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.用數(shù)字1,2,3,4,5組成的沒有重復(fù)數(shù)字的五位偶數(shù)的個(gè)數(shù)是( 。
A.120B.60C.50D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=lnx+$\frac{2}{x}$+ax-a-2(其中a>0).
(1)當(dāng)a=1時(shí),求f(x)的最小值;
(2)若x∈[1,3]時(shí),f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ln(ax+1)+x3-x2-ax(a∈R).
(1)若x=$\frac{2}{3}$為函數(shù)f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若a=-1時(shí),方程f(1-x)-(1-x)3=b有實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某公司每月最多生產(chǎn)100臺(tái)警報(bào)系統(tǒng)裝置,生產(chǎn)x臺(tái)(x∈N*)的總收入為30x-0.2x2(單位:萬元).每月投入的固定成本(包括機(jī)械檢修、工人工資等)為40萬元,此外,每生產(chǎn)一臺(tái)還需材料成本5萬元.在經(jīng)濟(jì)學(xué)中,常常利用每月利潤函數(shù)P(x)的邊際利潤函數(shù)MP(x)來研究何時(shí)獲得最大利潤,其中MP(x)=P(x+1)-P(x).
(Ⅰ)求利潤函數(shù)P(x)及其邊際利潤函數(shù)MP(x);
(Ⅱ)利用邊際利潤函數(shù)MP(x)研究,該公司每月生產(chǎn)多少臺(tái)警報(bào)系統(tǒng)裝置,可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若點(diǎn)(x,y)在曲線y=|x|與y=2所圍成的封閉區(qū)域內(nèi)(包括邊界),則2x-y的最大值為(  )
A.-6B.6C.2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.定義在R上的函數(shù)對(duì)任意實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)>0,
(1)判斷f(x)的奇偶性;
(2)判斷f(x)的單調(diào)性;
(3)若f(1)=2,解不等式f(3x+4)>4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.若二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足f(x+1)-f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)設(shè)g(x)=f(2x),求g(x)在[-3,0]的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知P(x,y)為區(qū)域$\left\{\begin{array}{l}{y^2}-{x^2}≤0\\ a≤x≤a+1\end{array}\right.$(a>0)內(nèi)的任意一點(diǎn),當(dāng)該區(qū)域的面積為3時(shí),z=2x-y的最大值是(  )
A.1B.3C.$2\sqrt{2}$D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案