如圖,已知矩形ABCD中,AB=2,AD=1,AE⊥BD,CF⊥BD,沿對(duì)角線BD把△BCD折起,使二面角C-BD-A的大小為60°,則線段AC的長(zhǎng)為
 
考點(diǎn):二面角的平面角及求法
專題:計(jì)算題,空間位置關(guān)系與距離,空間角
分析:首先在矩形ABCD中,分別求出AE,EF,CF的長(zhǎng),在平面ABD內(nèi),過F作FH∥AE,且FH=AE,連接AH,易得四邊形AEFH為矩形,由FH⊥DB,又CF⊥DB,即有∠CFH為二面角C-BD-A的平面角,且為60°,求得CH,再由線面垂直得到△ACH為直角三角形,由勾股定理,即可得到AC的長(zhǎng).
解答: 解:在直角三角形ABD中,AB=2,AD=1,BD=
5
,
AE=
2
5
,DE=
1-
4
5
=
1
5

同理直角三角形ABC中,CF=
2
5
,BF=
1
5
,
則EF=BD-DE-BF=
3
5

在平面ABD內(nèi),過F作FH∥AE,且FH=AE,連接AH,易得四邊形AEFH為矩形,
則AH=EF=
3
5
,AH∥EF,
FH⊥DB,又CF⊥DB,即有∠CFH為二面角C-BD-A的平面角,且為60°,
即CH=CF=
2
5
,
由BD⊥平面CFH,得到BD⊥CH,
即有AH⊥CH,
則AC=
AH2+CH2
=
9
5
+
4
5
=
65
5

故答案為:
65
5
點(diǎn)評(píng):本題主要考查空間的二面角的求法,考查空間線面的位置關(guān)系,同時(shí)考查基本的運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)S是至少含有兩個(gè)元素的集合,在S上定義了一個(gè)運(yùn)算“※”(即對(duì)任意的a、b∈S,對(duì)于有序元素對(duì)(a,b),在S中有唯一確定的元素a※b與之對(duì)應(yīng)),若對(duì)任意的a、b∈S,有a※(b※a)=b,下列等式中不恒成立的是( 。
A、(a※b)※a=a
B、[a※(b※a)]※(a※b)=a
C、b※(b※b)=b
D、(a※b)※[b※(a※b)]=b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線x2=2y存在兩個(gè)不同的點(diǎn)M、N關(guān)于直線y=kx+3對(duì)稱,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)y=x+
a2
x
在x∈(1,+∞)上為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2lnx-a(x-
1
x
)(a≠0)有兩個(gè)不同的極值點(diǎn)x1,x2(x1<x2).
(Ⅰ)求a的取值范圍;
(Ⅱ)設(shè)
1
e
x1
<1,求f(x)極小值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)教師甲要求學(xué)生從星期一到星期四每天復(fù)習(xí)3個(gè)不同的常錯(cuò)題;每周五對(duì)一周所復(fù)習(xí)的常錯(cuò)題隨機(jī)抽取若干個(gè)進(jìn)行檢測(cè)(一周所復(fù)習(xí)的常錯(cuò)題每個(gè)被抽到的可能性相同)
(1)數(shù)學(xué)教師甲隨機(jī)抽了學(xué)生已經(jīng)復(fù)習(xí)的4個(gè)常錯(cuò)題進(jìn)行檢測(cè),求至少有3個(gè)是后兩天復(fù)習(xí)過的常錯(cuò)題的概率;
(2)某學(xué)生對(duì)后兩天所復(fù)習(xí)過的常錯(cuò)題每個(gè)能做對(duì)的概率為
4
5
,對(duì)前兩天所學(xué)過的常錯(cuò)題每個(gè)能做對(duì)的概率為
3
5
,若老師從后三天所復(fù)習(xí)的常錯(cuò)題中各抽取一個(gè)進(jìn)行檢測(cè),若該學(xué)生能做對(duì)的常錯(cuò)題的個(gè)數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={1,2,3,4},集合A、B為集合M的非空子集,若?x∈A、y∈B,x<y恒成立,則稱(A,B)為集合M的一個(gè)“子集對(duì)”,則集合M的“子集對(duì)”共有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(
1
x
)=x+
1
x
-2,則f(x)=( 。
A、x+
1
x
-1
B、=x+
1
x
C、x+
1
x
-2
D、x+
1
x
+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,直線l的參數(shù)方程為
x=t
y=kt+1
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,已知曲線C的極坐標(biāo)方程為ρ=2cosθ,若直線l與曲線C相切,則k的值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案