已知橢圓C1的離心率為,一個焦點坐標為
(1)求橢圓C1的方程;
(2)點N是橢圓的左頂點,點P是橢圓C1上不同于點N的任意一點,連接
NP并延長交橢圓右準線與點T,求的取值范圍;
(3)設(shè)曲線與y軸的交點為M,過M作兩條互相垂直的直線與曲線C2、橢圓C1相交于點A、D和B、E,(如圖),記△MAB、
△MDE的面積分別是S1,S2,當時,求直線AB的方程.

【答案】分析:(1)先利用離心率和焦點坐標,得到一個關(guān)于參數(shù)的方程組,解這個方程組即可求出參數(shù),進而求出橢圓C1的方程.
(2)由題設(shè)條件行求出N(-2,0),橢圓右準線:x=,設(shè)P(x,y),則=,再由-2≤x≤2,能求出的取值范圍.
(3)先把直線MA的方程與拋物線方程聯(lián)立可得點A的坐標,再利用弦長公式求出|MA|,同樣的方法求出|MB|進而求出S1,同理可求S2.再代入已知就可知道是否存在直線l滿足題中條件了.
解答:解:(1)∵橢圓C1的離心率為,
一個焦點坐標為,

∴a=2,c=,b=,
∴橢圓C1的方程為:
(2)∵N是橢圓C1的左頂點,點P是橢圓C1上不同于點N的任意一點,
∴N(-2,0),橢圓右準線:x=,
設(shè)P(x,y),則=
∵-2≤x≤2,
=∈[,+∞).
的取值范圍是[,+∞).
(3)設(shè)直線MA的斜率為k1,則直線MA的方程為y=k1x-1.
,解得,或
則點A的坐標為(k1,k12-1).
又直線MB的斜率為-,同理可得點B的坐標為(-).
于是S1=|MA|•|MB|=•|k1|••|-|=
,得(1+4k12)x2-8k1x=0.
解得,或,則點D的坐標為().
又直線ME的斜率為-.同理可得點E的坐標為(,).
于是S2=|MD|•|ME|=
=,解得k12=2,或k12=
又由點A,B的坐標得,k==k1-.所以k=±
故滿足條件的直線存在,且有兩條,其方程為y=x和y=-
點評:本題是對橢圓與拋物線以及直線與拋物線和直線與橢圓的綜合問題的考查.是一道整理過程很麻煩的題,需要要認真,細致的態(tài)度才能把題目作好.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2012-2013學年湖北省黃岡市高三上學期期末考試理科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分13分)已知橢圓C1的離心率為,直線l: y-=x+2與.以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切.

(1)求橢圓C1的方程;

(ll)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l2過點F價且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;

(III)過橢圓C1的左頂點A作直線m,與圓O相交于兩點R,S,若△ORS是鈍角三角形,     求直線m的斜率k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:陜西省模擬題 題型:解答題

已知橢圓C1的離心率為,直線l:y=x+2與以原點為圓心、以橢圓C1的短半軸長為半徑的圓相切,
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1,且垂直于橢圓的長軸,動直線l2垂直l1于點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;
(3)若AC、BD為橢圓C1的兩條相互垂直的弦,垂足為右焦點F2,求四邊形ABCD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:陜西省模擬題 題型:解答題

已知橢圓C1的離心率為,直線l:y=x+2與以原點為圓心、橢圓C1的短半軸長為半徑的圓O相切。    
(Ⅰ)求橢圓C1的方程;  
(Ⅱ)設(shè)橢圓C1的左焦點為F1,右焦點為F2,直線l1過點F1,且垂直于橢圓的長軸,動直線l2垂直于l1,垂足為點P,線段PF2的垂直平分線交l2于點M,求點M的軌跡C2的方程;   
 (Ⅲ)過橢圓C1的左頂點A做直線m,與圓O相交于兩點R、S,若△ORS是鈍角三角形,求直線m的斜率k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:2013年高考數(shù)學復習卷C(四)(解析版) 題型:解答題

已知橢圓C1的離心率為e,且b,e,為等比數(shù)列,曲線y=8-x2恰好過橢圓的焦點.
(1)求橢圓C1的方程;
(2)設(shè)雙曲線C2的頂點和焦點分別是橢圓C1的焦點和頂點,設(shè)O為坐標原點,點A,B分別是C1和C2上的點,問是否存在A,B滿足.請說明理由.若存在,請求出直線AB的方程.

查看答案和解析>>

同步練習冊答案