數(shù)列{an}的前n項(xiàng)和Sn=n2+n,設(shè)數(shù)列{bn},bn=2an.
(1)求數(shù)列{bn}的前n項(xiàng)和Tn;
(2)求Rn=a1b1+a2b2+…+anbn.
分析:(1)知Sn=n2+n,由an和Sn的關(guān)系求出an,分為n=1時(shí),n≥2時(shí),n=1時(shí)適合n≥2時(shí)的式子,所以數(shù)列{an}是等差數(shù)列,再求出bn,由等比數(shù)列的前n項(xiàng)和求出Tn;
(2)由(1)知,數(shù)列{an}是等差數(shù)列,數(shù)列{bn}是等比數(shù)列,用錯(cuò)位相減法求Rn,寫出Rn的表達(dá)式,等式兩邊同乘以數(shù)列{bn}的公比4得到一個(gè)新的等式,兩式左右兩邊分別相減,再用等比數(shù)列的前n項(xiàng)和可求Rn.
解答:解:(1)∵n=1時(shí),a
1=S
1=2,
n≥2時(shí),a
n=S
n-S
n-1=n
2+n-(n-1)
2-(n-1)=2n,
∴a
n=2n,∴b
n=2
2n=4
n,
T
n=b
1+b
2+…+b
n=4
1+4
2+…+4
n=
=
(4n-1).
(2)R
n=a
1b
1+a
2b
2+…+a
nb
n=2×4
1+4×4
2+…+2n×4
n…①
兩邊同乘以4得:4R
n=2×4
2+4×4
3+…+2n×4
n+1…②
①-②得:-3R
n=2×4
1+2×4
2+2×4
3+…+2×4
n-2n×4
n+1=2×
-2n×4
n+1=(
-8n)4
n-
,
∴R
n=(
n-
)4
n+
.
點(diǎn)評(píng):由數(shù)列的前n項(xiàng)和求數(shù)列的通項(xiàng)為:a
n=,用錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,用時(shí)要觀察項(xiàng)的特征,是否是等差數(shù)列的項(xiàng)與等比數(shù)列的項(xiàng)的乘積.