(本小題滿分12分)已知兩點(diǎn),直線,在直線上求一點(diǎn).
(1)使最。 (2)使最大.  

(1)直線A1B與的交點(diǎn)可求得為,由平面幾何知識(shí)可知最小.(2)直線AB與的交點(diǎn)可求得為,它使最大.

解析試題分析:(1)要使得點(diǎn)P到點(diǎn)A,B的距離和最小,則利用兩邊之和大于等于第三邊,結(jié)合對(duì)稱(chēng)性,做一個(gè)點(diǎn)A,(或者B)的關(guān)于直線的對(duì)稱(chēng)點(diǎn)A’(,或者B’),然后連接A’B與直線相交的交點(diǎn)即為所求的最小值的點(diǎn)P的位置。通過(guò)等價(jià)轉(zhuǎn)化得到結(jié)論。
(2)而要求解的最大值,則利用兩點(diǎn)在直線的同側(cè),可以連線,延長(zhǎng)與直線相交,結(jié)合兩邊之差小于等于第三邊,當(dāng)三點(diǎn)共線的時(shí)候滿足最大值得到結(jié)論。
解:(1)可判斷A、B在直線l的同側(cè),設(shè)A點(diǎn)關(guān)于的對(duì)稱(chēng)點(diǎn)A1的坐標(biāo)為(x1,y1).
則有﹍﹍﹍﹍﹍2分     
解得 ﹍﹍﹍﹍4分
由兩點(diǎn)式求得直線A1B的方程為,            ﹍﹍﹍﹍5分
直線A1B與的交點(diǎn)可求得為                     ﹍﹍﹍﹍6分
由平面幾何知識(shí)可知最小.
(2)由兩點(diǎn)式求得直線AB的方程,即.﹍﹍﹍﹍8分
直線AB與的交點(diǎn)可求得為,它使最大.        ﹍﹍﹍﹍12分
考點(diǎn):本試題主要是考查了動(dòng)點(diǎn)到兩定點(diǎn)的距離和或者差的最值問(wèn)題。利用三點(diǎn)共線來(lái)得到。同時(shí)要結(jié)合對(duì)稱(chēng)性的運(yùn)用。
點(diǎn)評(píng):解決該類(lèi)最值問(wèn)題,一般要轉(zhuǎn)換為三點(diǎn)共線的特殊情況來(lái)得到。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中,邊上的高所在的直線的方程為,的平分線所在直線的方程為,若點(diǎn)的坐標(biāo)為
(1)求點(diǎn)的坐標(biāo);
(2)求直線BC的方程;
(3)求點(diǎn)C的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)
求與直線垂直,并且與原點(diǎn)的距離是5的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題14分)過(guò)點(diǎn)向直線作垂線,垂足為.求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本大題10分)求經(jīng)過(guò)直線L1:3x + 4y – 5 = 0與直線L2:2x – 3y + 8 = 0的交點(diǎn)M,且滿足下列條件的直線方程
(1)與直線2x + y + 5 = 0平行 ;
(2)與直線2x + y + 5 = 0垂直;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分11分)
已知直線m過(guò)點(diǎn)(-1,2),且垂直于: x+2y+2=0
(1)求直線m;
(2)求直線m和直線l的交點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知直線 經(jīng)過(guò)點(diǎn),,直線經(jīng)過(guò)點(diǎn),。
(1)若,求的值。
(2)若,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直線l1:2x-y+2=0與l2:x+2y-4=0,點(diǎn)P(1, m).
(Ⅰ)若點(diǎn)P到直線l1, l2的距離相等,求實(shí)數(shù)m的值;
(Ⅱ)當(dāng)m=1時(shí),已知直線l經(jīng)過(guò)點(diǎn)P且分別與l1, l2相交于A, B兩點(diǎn),若P恰好
平分線段AB,求A, B兩點(diǎn)的坐標(biāo)及直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知正方形的中心為,一條邊所在的直線的方程,求正方形的其他三邊所在的直線方程

查看答案和解析>>

同步練習(xí)冊(cè)答案