中,已知求∠A,∠C,邊c.

∠A=60°或120° 
∠A=60°時,∠C=75°,c= 
∠A=120°時,∠C=15°,c= 

解析試題分析:解:因為,所以
所以
當(dāng)∠A=60°時,∠C=75°,= 
當(dāng)∠A=120°時,∠C=15°,= 
考點:正弦定理
點評:在解三角形中,正弦定理的適應(yīng)范圍是:兩角及一邊,兩邊和一邊的對角。在運用正弦定理過程中,當(dāng)由正弦值求出角度時,要結(jié)合是否符合大角對大邊的性質(zhì)去取舍角度。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知△ABC中,a=8,b=7,B=60°,求邊c及S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,A,B是海面上位于東西方向相距海里的兩個觀測點,現(xiàn)位于A點北偏東45°,B點北偏西60°的D點有一艘輪船發(fā)出求救信號,位于B點南偏西60°且與B點相距海里的C點的救援船立即即前往營救,其航行速度為30海里/小時,該救援船到達D點需要多長時間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某人在C點測得某塔在南偏西80°的O處,塔頂A的仰角為45°,此人沿南偏東40°方向前進10米到D處,測得塔頂A的仰角為30°,求塔OA的高度?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

ABC中內(nèi)角A,B,C的對邊分別為a,b,c,已知2a=c,
(I)求的值;
(II)若D為AC中點,且ABD的面積為,求BD長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,內(nèi)角A,B,C的對邊分別為,若.
(1)求角B;
(2)若的面積為,求函數(shù)的單調(diào)增區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,是角所對的邊,且
(1)求角的大。(2)若,求△ABC周長的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的角A、B、C所對的邊分別是,
設(shè)向量,
(Ⅰ)若,求證:為等腰三角形;
(Ⅱ)若,邊長,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,某城市設(shè)立以城中心為圓心、公里為半徑的圓形保護區(qū),從保護區(qū)邊緣起,在城中心正東方向上有一條高速公路、西南方向上有一條一級公路,現(xiàn)要在保護區(qū)邊緣PQ弧上選擇一點A作為出口,建一條連接兩條公路且與圓相切的直道.已知通往一級公路的道路每公里造價為萬元,通往高速公路的道路每公里造價是萬元,其中為常數(shù),設(shè),總造價為萬元.

(1)把表示成的函數(shù),并求出定義域;
(2)當(dāng)時,如何確定A點的位置才能使得總造價最低?

查看答案和解析>>

同步練習(xí)冊答案