如圖所示,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB的中點(diǎn),D為PB的中點(diǎn),且△PMB為正三角形.
(1)求證:DM∥平面APC; (2)求證:平面ABC⊥平面APC.
(1)詳見解析;(2)詳見解析.
【解析】
試題分析:(1)要證明直線和平面平行,只需在平面內(nèi)找一條 直線與之平行,由已知得是的中位線,所以,進(jìn)而證明平面;(2)要證明面面垂直,只需在一個(gè)平面內(nèi)找到另一個(gè)平面的一條垂線即可,由等邊三角形及為的中點(diǎn),則,進(jìn)而說(shuō)明,進(jìn)而說(shuō)明平面,則有,又由已知可證平面,進(jìn)而證明結(jié)論.
試題解析:(1)由已知,得是的中位線,所以,又平面,平面,故平面.
(2)因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014031104404071834235/SYS201403110441133746282707_DA.files/image006.png">為正三角形,為的中點(diǎn),所以.所以.又
所以平面.因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014031104404071834235/SYS201403110441133746282707_DA.files/image020.png">平面,所以.又 所以平面.因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014031104404071834235/SYS201403110441133746282707_DA.files/image020.png">平面,所以平面⊥平面.
考點(diǎn):1、直線和平面平行的判定;2、直線和平面垂直的判定和性質(zhì);3、面面垂直的判定.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
AB |
BC |
3 |
3 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,已知三棱錐A-BCD中M、N分別為AB、CD的中點(diǎn),則下列結(jié)論正確的是( )
A.MN≥(AC+BD)
B.MN≤(AC+BD)
C.MN=(AC+BD)
D.MN<(AC+BD)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com