分析 由條件利用余弦定理求得a、b、c的值,△ACD中,再利用余弦定理求得CD的值.
解答 解:△ABC中,若a2-b2+ac=0,A=30°,則由余弦定理可得a2=b2+c2-2bc•cosA=b2+c2-$\sqrt{3}$bc,
∴c=$\sqrt{3}$b-a,代入a2-b2+ac=0,可得b=$\sqrt{3}$a,c=$\sqrt{3}$b-a=2a.
∵△ABC的面積為 $\frac{1}{2}$bc•sinA=$\frac{1}{2}$$\sqrt{3}$a•2a•sin30°=2$\sqrt{3}$,∴a=2,b=3$\sqrt{3}$,c=4,
∴CD2=b2+${(\frac{c}{2})}^{2}$-2b•$\frac{c}{2}$•cosA=27+4-2•3$\sqrt{3}$•2•$\frac{\sqrt{3}}{2}$=4,解得CD=2,
故答案為:2.
點(diǎn)評 本題主要考查余弦定理、三角形的面積公式,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{4}{5}$,$\frac{3}{5}$) | B. | (-1,$\frac{3}{5}$) | C. | ($\frac{3}{5}$,$\frac{4}{5}$) | D. | ($\frac{3}{5}$,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com