【題目】已知f(x)=ax2+x﹣a.a(chǎn)∈R
(1)若不等式f(x)<b的解集為(﹣∞,﹣1)∪(3,+∞),求a,b的值;
(2)若a<0,解不等式f(x)>1.
【答案】
(1)解:由題意可得方程ax2+x﹣a﹣b=0的兩根分別為﹣1、3,且a<0 …(1分)
∴ 解得
(2)解:若a<0,不等式為ax2+x﹣(a+1)>0,即
∵ .
∴當 時, ,不等式的解集為 ;
當 時, ,不等式的解集為; …(10分)
當 時, ,不等式的解集為
【解析】(1)由題意可得方程ax2+x﹣a﹣b=0的兩根分別為﹣1、3,且a<0,利用韋達定理,可得a,b的值;(2)若a<0,等式為ax2+x﹣(a+1)>0,即 ,分類討論,可得不同情況下不等式的解集.
【考點精析】掌握二次函數(shù)的性質(zhì)是解答本題的根本,需要知道當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,二面角α﹣l﹣β的大小為60°,A∈β,C∈α,且AB、CD都垂直于棱l,分別交棱l于B、D.已知BD=1,AB=2,CD=3,則AC= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面使用類比推理正確的是( )
A.直線a∥b,b∥c,則a∥c,類推出:向量 , ,則
B.同一平面內(nèi),直線a,b,c,若a⊥c,b⊥c,則a∥b.類推出:空間中,直線a,b,c,若a⊥c,b⊥c,則a∥b
C.實數(shù)a,b,若方程x2+ax+b=0有實數(shù)根,則a2≥4b.類推出:復數(shù)a,b,若方程x2+ax+b=0有實數(shù)根,則a2≥4b
D.以點(0,0)為圓心,r為半徑的圓的方程為x2+y2=r2 . 類推出:以點(0,0,0)為球心,r為半徑的球的方程為x2+y2+z2=r2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)判斷f(x)的奇偶性;
(2)判斷f(x)的單調(diào)性,并加以證明;
(3)寫出f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】長時間用手機上網(wǎng)嚴重影響著學生的身體健康,某校為了解A、B兩班學生手機上網(wǎng)的時長,分別從這兩個班中隨機抽取5名同學進行調(diào)查,將他們平均每周手機上網(wǎng)的時長作為樣本,繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).
(Ⅰ)分別求出圖中所給兩組樣本數(shù)據(jù)的平均值,并據(jù)此估計,哪個班的學生平均上網(wǎng)時間較長;
(Ⅱ)從A班的樣本數(shù)據(jù)中隨機抽取一個不超過19的數(shù)據(jù)記為a,從B班的樣本數(shù)據(jù)中隨機抽取一個不超過21的數(shù)據(jù)記為b,求a>b的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=2|x﹣4|﹣logax+2無零點,則實數(shù)a的取值范圍為;
若函數(shù)f(x)=|2x﹣2|﹣b有兩個零點,則實數(shù)b的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com