【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn).
(1)求橢圓的方程;
(2)直線與橢圓交于兩點(diǎn),點(diǎn)位于第一象限,是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn).
(i)若直線的斜率為,求四邊形面積的最大值;
(ii)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),滿(mǎn)足,問(wèn)直線的斜率是否為定值,請(qǐng)說(shuō)明理由.
【答案】(I);(Ⅱ)(i);(ii)的斜率為定值.
【解析】
試題(I)設(shè)橢圓的方程為,由條件利用橢圓的性質(zhì)求得和的值,可得橢圓的方程.
(II)(i)設(shè)的方程為,代入橢圓的方程化簡(jiǎn),由△>0,求得的范圍,再利用利用韋達(dá)定理可得以及的值.再求得的坐標(biāo),根據(jù)四邊形的面積,計(jì)算求得結(jié)果.
(ii)當(dāng)時(shí),C、的斜率之和等于零,的方程為,把它代入橢圓的方程化簡(jiǎn)求得.再把直線的方程橢圓的方程化簡(jiǎn)求得的值,可得以及的值,從而求得的斜率的值.
試題解析:設(shè)橢圓的方程為,由題意可得它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),.
再根據(jù)離心率,求得,∴橢圓C的方程為.
(Ⅱ)(i)設(shè),的方程為,代入橢圓的方程化簡(jiǎn)可得,由,求得.
利用韋達(dá)定理可得,.
在中,令求得,∴四邊形的面積
,
故當(dāng)時(shí),四邊形的面積取得最小值為4.
(ii)當(dāng)時(shí),、的斜率之和等于零,設(shè)的斜率為,則的斜率為,
的方程為,把它代入橢圓的方程化簡(jiǎn)可得
,所以.
同理可得直線的方程為,
,
的斜率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中“竹九節(jié)”問(wèn)題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第6節(jié)的容積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(﹣2,0),B(0,1)在橢圓C: (a>b>0)上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)P是線段AB上的點(diǎn),直線y= x+m(m≥0)交橢圓C于M、N兩點(diǎn),若△MNP是斜邊長(zhǎng)為 的直角三角形,求直線MN的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在銳角△ABC中,a、b、c分別是角A、B、C的對(duì)邊,若A滿(mǎn)足2cos2A+cos(2A+ )=﹣ .
(Ⅰ)求A的值;
(Ⅱ)若c=3,△ABC的面積為3 ,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)y=f(x)為減函數(shù),且函數(shù)y=f(x﹣1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱(chēng),若f(x2﹣2x)+f(2b﹣b2)≤0,且0≤x≤2,則x﹣b的取值范圍是( )
A.[﹣2,0]
B.[﹣2,2]
C.[0,2]
D.[0,4]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校某文具商店經(jīng)營(yíng)某種文具,商店每銷(xiāo)售一件該文具可獲利3元,若供大于求則削價(jià)處理,每處理一件文具虧損1元;若供不應(yīng)求,則可以從外部調(diào)劑供應(yīng),此時(shí)每件文具僅獲利2元.為了了解市場(chǎng)需求的情況,經(jīng)銷(xiāo)商統(tǒng)計(jì)了去年一年(52周)的銷(xiāo)售情況.
銷(xiāo)售量(件) | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
周數(shù) | 2 | 4 | 8 | 13 | 13 | 8 | 4 |
以去年每周的銷(xiāo)售量的頻率為今年每周市場(chǎng)需求量的概率.
(1)要使進(jìn)貨量不超過(guò)市場(chǎng)需求量的概率大于0.5,問(wèn)進(jìn)貨量的最大值是多少?
(2)如果今年的周進(jìn)貨量為14,寫(xiě)出周利潤(rùn)Y的分布列;
(3)如果以周利潤(rùn)的期望值為考慮問(wèn)題的依據(jù),今年的周進(jìn)貨量定為多少合適?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:,離心率為,并過(guò)點(diǎn).
(1)求橢圓方程;
(2)若直線與橢圓相交于兩點(diǎn)(不是左右頂點(diǎn)),且以為直徑的圓過(guò)橢圓的右頂點(diǎn)。求證:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形的兩條對(duì)角線相交于點(diǎn), 邊所在直線的方程為,點(diǎn)在邊所在直線上.
(Ⅰ)求邊所在直線的方程;
(Ⅱ)求矩形外接圓的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義為n個(gè)正數(shù)的“均倒數(shù)”.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)數(shù)列的前n項(xiàng)和為,若4<對(duì)一切恒成立試求實(shí)數(shù)m的取值范圍.
(3)令,問(wèn):是否存在正整數(shù)k使得對(duì)一切恒成立,如存在求出k值,否則說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com